Nanoparticles for the Cancer Therapeutics

Main Article Content

บุรพล สิงห์นา

Abstract

Nanoparticles have been gained more attention in biomedical applications particularly for the cancer therapeutics in order to enhance the therapeutic efficacy. Some of nanoparticles (e.g. Doxil and Abraxane) were already approved by US FDA for cancer treatments and some others have been investigated in clinical trials.  Almost nanoparticles in curent cancer treatments penetrate and accumulate in the cancer cells by using the passive mechanism through the Enhanced permeability and retention (EPR) effect. In this article, the basic concepts of nanoparticles for drug delivery in cancer therapeutics are discussed. The chemical compositions, shapes, sizes, and surfaces (charge, area, and reactivity) of nanoparticles, which play a crucial role for applying nanoparticles in cancer treatments, are explained. In addition, the obstacles and the future trends of nanoparticle research for cancer therapeutics are discussed as well.

Article Details

How to Cite
1.
สิงห์นา บ. Nanoparticles for the Cancer Therapeutics. Prog Appl Sci Tech. [Internet]. 2014 Jun. 30 [cited 2024 Nov. 15];4(1):48-57. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243223
Section
Pure and Applied Chemistry

References

Z. Gu, A.A. Aimetti, Q. Wang, T.T. Damg, Y. Zhang, S.O. Veiseh, H. Cheng, R.S. Langer, D. G. Anderson. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano. 7(2013): 4194–4201.

K. Donaldson, R. Duffin, J.P. Langrish, M.R. Miller, N.L. Mills, C.A. Poland, J. Raftis, A. Shah, C.A. Shaw, D.E. Newby. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine. 8(2013): 403–423.

M.E. Davis, Z. Chen, D.M. Shin. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 7(2008): 771–782.

L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Forokhzad. Nanoparticles in medicine: therapeutic applications and developments. Clin Phamacol Ther. 83(2008): 761–769.

N. Kamaly, Z. Xiao, P.M. Valencia, A.F. Radovic-Moreno, O.C. Forokhzad. Targeted polymeric therapeutic nanoparticles: design, development, and clinical translation. Chem Soc Rev. 41(2012): 2971–3010.

A. Udhrain, K.M. Skubitz, D.W. Northfelt. Pegylated liposomal doxorubicin in the treatment of AIDS-related Kaposi’s scarcoma. Int J Nanomedicine. 2(2007): 345–352.

M. Montana, C. Ducros, P. Verhaeghe, T. Terme, P. Vanelle, P. Rathelot. Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers. J Chemother. 23(2011): 59–66.

T. Ta, T.M. Porter. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 169(2013): 112–125.

F.M. Kievit, M. Zhang. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 23(2011): H217–H247.

D.M. Smith, J.K. Simon, J.R.Jr. Baker. Applications of nanotechnology for immunology. Nat Rev Immunol. 13(2013): 592–605.

J. Shi, Z. Xiao, N. Kamaly, O.C. Forokhzad. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 44(2011): 1123–1134.

E.K. Chow, D.C. Ho. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 5(2013): 1–12.

E. Blanco, A. Hsiao, A. P. Mann, M.G. Landry, F. Meric-Bernstam, M. Ferrari. Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci. 102(2011): 1247–1152.

F. Jia, X. Liu, L. Li, S. Mallapragada, B. Narasimhan, Q. Wang. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release. 172(2013): 1020–1034.

S. Gai, C. Li, P. Yang, J. Lin. Recent progress in rare erath micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 114(2014): 2343–2389.

H.F. Krug, P. Wick. Nanotoxicity: an interdisciplinary challenge. Angew Chem Int Ed. 50(2011): 1260–1278.

H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni. Renal clearance of quantum dots. Nat Biotechnol. 25(2007): 1165–1170.

Y. Geng, P. Dallhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Biotechnol. 2(2007): 249–255.

H. Yamada, C. Urata, Y. Aoyama, S. Osada, Y. Yamauchi, K. Kuroda. Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater. 24(2012): 1462–1471.

H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li. Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater. 24(2012):4572–4580.

Y.-J. Lee, N.B. Schade, L. Sun, J.A. Fan, D.R.Bae, M.M. Mariscal, G. Lee, F.Capasso, S.Sacanna, V.N. Manoharan, G.-R. Yi. Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics. ACS Nano. 7(2013): 11064–11070.

N.J.J. Johnson, A. Korinek, C. Dong, F.C.J.M. van Veggel. Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc. 134(2012): 11068–11071.

B. Mahler, N. Lequeux, B. Dubertret. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J Am Chem Soc. 132(2010): 953-959.

M. Nakamura, K.Ishimura. Synthesis and characterization of organosilica nanoparticles prepared from 3-mercaptopropyltrimethoxysilane as the single silica source. J Phys Chem C. 111(2007): 18892–18898.

Y. Matsumura, H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(1986): 6387–6392.

T. Lammers, F. Kiessling, W.E. Hennink, G. Storm. Drug targeting to tumors: principles, pitfalls and preclinical progress. J Control Release. 161(2012): 175–187.

B. Singhana, P. Slattery, A. Chen, M. Wallace, M.P. Melancon. Light-activatable gold nanoshells for drug delivery applications. AAPS Pharm Sci Tech. (2014). DOI: 10.1208/s12249-014-0097-8

A.A. Shemetov, I. Nabiev, A. Sukhanova. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 6(2012): 4585–4602.

Z. Cheng, A.A. Zaki, J.Z. Hui, V.R. Muzykantov, A. Tsourkas. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 338(2012): 903–910.

Z. Ge, S. Liu. Functional block copolymer assemblies responsive to tumor and intracellular microenvironment for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev. 7(2013): 7289–7325.