Isolation of Acidotolerant/Acidophilic Photosynthetic Bacteria from Peat Soils in Nakhon Si Thammarat Province and the Promoting of Biomass and 5-Aminolevulinic Acid Production by Plackett-Burman Technique

Main Article Content

อังคณา ใสเกื้อ

Abstract

Peat soils samples collected from 7 districts of Nakhon Si Thammarat province were used for isolation acidotolerant/acidophilic photosynthetic bacteria. The soil samples were inoculated into GMY medium with pH of 4.5-6.5, and cultivated under microaerobic-light condition (5,000 Lux) at room temperature (32±3C) for 48 hours. The results showed that 9, 5 and 2 isolates can be isolated from the medium with pH of 5.5, 6.0 and 6.5, respectively. At lower pH values, 4.5 and 5.0, only 2 isolates were isolated. All isolates were subsequently screened for the production of 5-aminolevulinic acid (ALA) by culturing in the GMY medium, pH 6.0. The highest ALA (20.42 μM) was found from the isolate named Rhodopseudomonas palustris JP255. The Plackett-Burman design with 7 factors (glycine, succinate, propionic acid, magnesium chloride, levulinic acid, pH and glucose) at 3 levels was performed for optimization biomass and ALA production of the JP255. By this design, approximately 218.78 μM ALA and 4.156 g/L biomass could be enhanced. Statistical analysis of the results from Plackett-Burman revealed that magnesium chloride, glucose and the pH gave positive affected on biomass and ALA production; whereas glycine succinate propionic acid and levulinic acid gave negative results. The suitable medium (1 liter) for ALA and biomass production of the JP255 was GMY medium (L-glutamic 3.8 g, DL-malic acid 2.7 g, yeast extract 2.0 g, (NH4)2HPO4 0.8 g, KH2PO4 0.5 g, MgSO4· 7H2O 0.2 g, CaCl2·2H2O 0.053 g, MnSO4· 7H2O 1.2x10-3g, thiamine-HCl 1.0x10-3g, nicotinic-HCl 1.2x10-3g and Biotin 1.0x10-5g) addition with glycine 5 mM, succinate 10 mM, propionic acid 1 mM, MgCl2· 6H2O 20 mM, levulinic acid 10 mM and glucose 10 mM and adjusted the final pH to 6.5.

Article Details

How to Cite
1.
ใสเกื้อ อ. Isolation of Acidotolerant/Acidophilic Photosynthetic Bacteria from Peat Soils in Nakhon Si Thammarat Province and the Promoting of Biomass and 5-Aminolevulinic Acid Production by Plackett-Burman Technique. Prog Appl Sci Tech. [Internet]. 2013 Dec. 12 [cited 2024 Apr. 24];3(2):75-89. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243236
Section
Miscellaneous (Applied Science)

References

Kobayashi, M and Kobayashi, M. 2000. Waste remediation and treatment using anoxygenic Phototrophic bacteria. In: Blankenship RE, Madigan MT and Bauer CE, (eds): Anoxygenic Photosynthetic Bacteria, pp.1269-1282.

Sasaki, K., Tanaka, T and Nagai, S. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. In: Bioconversion of waste materials to industrial products, second edition. Martin AM, (eds): Blackie Academic and professional, pp. 247-291.

Koh, R.H. And Song, H.G. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17: 1805-1810.

Lee, K.H., Koh, R.H. and Song, H.G. 2008. Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions. The J. Microbiol. 46: 641-646.

Raymond, J., Siefert, J.L. Staples, C.R. and Blankenship, R.E. 2004. The natural history of nitrogen fixation. Mole. Biol. Evolution. 21: 541-555.

Sasikala, Ch., Ramana, Ch.V. and Rao, P.R. 1994. 5-Aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459.

Hotta, Y. Tanaka, T., Takaoka, H., Takeuchi, Y. and Konnai, M. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22: 109-114.

Al-Thabet, 2006a. Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under dry conditions. J. Agron. 5(1): 45-49.

Al-Thabet, S.S. 2006b. Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under drough conditions. J. Agron. 5: 45-49.

Al-Khateeb, A.A., Alkhateeb, S.A., Okawara, R. and Al-Abdoulhady, I.A. 2006. Promotive effect of 5-aminolevulinic acid (5-ALA) on fruit yield and quality of Date Palm cv. Khalas. J. Biol. Sci.

(6): 1118-1121.

Korkmaz, A. and Korkmaz, Y. 2009. Promotion by 5-aminolevulinic acid pepper seed germination and seedling emergence under low-temperature stress. Sci. Hort. 119: 98-102.

Awad, M.A. and Al-Qurashi, A.D. 2011. Promotive effect of 5-aminolevulinic acid on growth of young ‘Barhee’ tissue culture derived date palm (Phoenix dactylifera L.) trees in a newly established orchard. J. Food. Agric. Environ. 9: 783-786.

Xu, F., Cheng, S., Zhu, J., Zhang, W. and Wang, Y. 2011. Effect of 5-aminolevulinic acid on chlorophyll, photosynthesis, soluble sugar and flavonoid of Ginko biloba. Not. Bot. Hort. Agrobot.

Cluj. 39(1): 41-47.

Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K. and Tanaka, K. 2003. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant. Physiol. 160: 1085-1091.

Richter, A., Peter, E., PÖrs, Y., Lorenzen, S. and Grimm, B. 2010. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant. Cell. Physiol. 51(5): 670-681.

Maruyama-Nakashita, A. 2012. Sulfate uptake, cysteine and GSH contents are increased by 5-aminolevulinic acid in Arabidopsis thaliana. Sulfur metabolism in plants proceedings of the

international plant sulfur workshop. 1: 85-89.

Mishra, S.N. and Srivastava, H.S. 1983. Stimulation of nitrate reductase activity by delta aminolevulinic acid in excised maize leaves. Experientia. 39: 1118-1120.

Sasaki, K., Ikeda, S., Nishizawa, Y. and Hayashi, M. 1987. Production of 5-aminolevulinic acid by photosynthetic bacteria. J. Ferment. Technol. 65: 511-515.

Akram, N.A. and Ashraf, M. 2011. Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5- aminolevulinic acid. Pak. J. Bot. 43(1): 521-530.

Youssef, T., Awad, M.A. 2008. Mechanisms of enhancing photosynthetic gas exchange in date palm Seedling (Phoenix dactylifera L.) under salinity stress by 5-aminolevulinic acid based fertilizer. J. Plant. Growth Regul. 27: 1-9.

Balestrasse, K.B. Tomaro, M.L., Batlle, A. and Noriega, G.O. 2010. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry. 71: 2038-2045.

Kumar, A.M., Chaturvedi, S. and SÖll, D. 1999. Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliama. Phytochem. 51: 847-851.

Wang, J.J., Jiang, W.B. Zhang, Z., Yao, Q.H., Matsui, H. and Ohara, H. 2003. 5-Aminolevulinic acid and its application in agriculture. Plant. Physiol. Commune. 39: 185-192.

Osaki, M., Watanabe, T., Ishizawa, T., Nilnond, C.. Nuyim, T., Sittibush, C. and Tadano, T. 1998. Nutrition al characteristics in leaves of native plants grown in acid sulfate, peat, sandy podzolic and saline soils distributed in peninsular Thailand. Plant and Soil. 202: 175-182.

Saikeur, A., Choorit, W., Prasertsan, P., Kantachote, D. and Sasaki, K. 2009. Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by

Rhodopseudomonas palustris KG31. Biosci. Biotechnol. Biochem. 73: 987-992.

Mauzerall, D. and Granick, S. 1956. The occurrence and determination of -aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446.

Madigan, M.T. and Marrs, B.L. 1997. Extremophiles. J. Sci. Am. 276: 66-71.

Kantachote, D., Torpee, S. and Umsakul, K. 2005. The potential use of anoxygenic phototrophic bacteria for treating latex rubber sheet wastewater. Electron. Biotechnol. 8: 314-323.

Pfenning, N. 1974. Rhodopseudomonas globiformis, sp. n., a New species of the Rhodospirillaceae. Arch Microbiol. 100: 197-206.

Imhoff, J.F. 2011. Transfer of Rhodopseudomonas acidophilla to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. Nov Int. J. Syst. Evol. Microbiol. 51: 1863-1866.

Madigan, M.T. 2003. Anoxygenic phototrophic bacteria from extreme environments. Photosyn. Research. 76: 157-171.

Alam, S.M. 1981. Effect of solution pH on the growth and chemical composition of rice plant. J. Plant Nutr. 4(3): 247.

Sidhu, G.S. 1998. Role of Microorganisms in soil fertility. Ultra Gro Plant Food. Vol. 1-10.

Koesnandar, P.S., Nurani, D. and Wahyono, E. 2005. Government role on research and application of technology for peatland utilization. National seminar on peatlands and their problems. March 21st 2006. University of Tanjungpura, Pontianak. (In Indonesia).

Motola, S. and Agharkar, S. N. 1992. Preformulation research of parenteral medications (2nd ed.). In K. E. Avis, H. A. Lieberman, & L. Lachman(Eds.), Pharmaceutical dosage forms: Parenteral Medications. New York: Marcel Dekker. 1: 115-172.

Sasaki, K., Tanaka, T., Nishizawa, Y. and Hayashi, M. 1990. Production of herbicide, 5-aminolevulinic acid by Rhodobacter sphaeroides using the effluent of swine wastes from an

anaerobic digester. Applied Microbiol and Biotechnol. 32: 727-731.

Tangprasittipap, A., Prasertsan, P., Choorit, W. and Sasaki, K. 2002. 5-aminolevulinic acid from photosynthesis bacteria and its applications. Songklanakarin J. of Science and Tech. 24(4): 715-725.

Sasaki, K., Watanabe, M., Tanaka, T. and Tanaka, T. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied. Microbiol. Biotechnol. 58: 23-29.

Sasaki, K., Watanabe, M. and Nishio, N. 1997. Inhibition of 5-aminolevulinic acid (ALA) dehydratase by undissociated levulinic acid during ALA extracellular formation by Rhodobacter

sphaeroides. Biotechnol Lett. 19: 421-424.

Bhosale, S., Kshirsagar, D., Power, P.,Yeole, T. and Ronade, D. 1995. Purification and characterization of 5-aminolevulinic acid dehydratase from Methanosarcina berkeri. FEMS. Microbiol. Lett. 127: 151-155.

Nishikawa, S., Watanabe, K., Tanaka, T., Miyachi, N., Hotta, Y. and Murooka, Y. 1999. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798-804.

Kamiyama,H., Hotta, Y., Tanaka, T., Nishikawa, S and Sasaki, K. 2000. Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria. Seibutu-Kougaku. 78: 48-55.

Noparatnaraporn,N., Watanabe, M. and Sasaki, K. 2000. Extracellular formation of 5-aminolevulinic acid by intact cells of the marine photosynthetic bacterium Rhodovulum sp. under various pH conditions. World. J. Microbiol. Biotechnol. 16: 313-315.

Chung, S.Y., Seo, K.H. and Rhee, J.I. 2005. Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process. Biochem. 40: 385-394.

Qin, G., Lin, J.P., Liu, X.X. and Cen, P.L. 2006. Effects of medium compositions on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102: 316-322. Applied Microbiol and Biotechnol. 32: 727-731.

Wang, J.Q., Wu. J.H. and Zhang, Z.M. 2006. Expression of 5-aminolevulinic acid synthase in recombinant Escherichia coli. World. J. Microbiol. Biotechnol. 22: 461-468.

Fu, W.Q., Lin, J.P. and Cen, P.L. 2007. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Applied. Microbiol. Biotechnol. 75: 777-782.