Global Performance Test of Metaheuristics Optimization and Engineering Applications

Main Article Content

Somboon Sukpancharoen

Abstract

In this research study, 10 of the latest metaheuristics' performance characteristics are compared in the context of 19 unconstrained benchmark functions, where the large dimension of the test challenge is 100. Optimization problems may often encompass a large number of design variables, exerting complex effects upon the specific objective function. The performance is evaluated as the algorithm seeks a global optimum and avoids becoming trapped in a local optimum through the use of best values, mean and standard deviation (Stdev.). This study also uses Friedman Aligned Ranks and applies the Quade Ranks test to examine the differences in performance as the algorithms seek their solutions. Analysis of exploitation is conducted using Friedman Aligned Rank tests, while exploration is addressed using the Quade Ranks test. The study revealed that the different algorithms use different approaches to look for their solutions, with a significance level of 0.05. Finally, the comparison of the ten algorithms' performance is presented in this paper in the context of solving constrained mechanical and chemical engineering problems.

Article Details

How to Cite
1.
Sukpancharoen S. Global Performance Test of Metaheuristics Optimization and Engineering Applications. Prog Appl Sci Tech. [internet]. 2021 Apr. 6 [cited 2025 Jan. 19];11(1):10-24. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243313
Section
Mathematics and Applied Statistics

References

Abbassi R, Abbassi A, Heidari AA, Mirjalili S. An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energ Convers Manage. 2019 Jan 1;179:362-72.

Faris H, Ala’M AZ, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H. An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Inform Fusion. 2019 Aug 1;48:67-83.

Wu G, Pedrycz W, Suganthan PN, Mallipeddi R. A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl soft comput. 2015 Dec 1;37:774-86.

Alba E, Dorronsoro B. The exploration/ exploitation tradeoff in dynamic cellular genetic algorithms. IEEE T Evolut Comput. 2005 Apr 4;9(2):126-42.

Lozano M, García-Martínez C. Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report. Comput Oper Res. 2010 Mar 1;37(3):481-97.

Ab Wahab MN, Nefti-Meziani S, Atyabi A. A comprehensive review of swarm optimization algorithms. PloS one. 2015 May 18;10(5):e0122827.

Yang XS, editor. Nature-inspired algorithms and applied optimization. Springer; 2017 Oct 8.

Cho HJ, Ahmed F, Kim TY, Kim BS, Yeo YK. A comparative study of teaching-learning-self-study algorithms on benchmark function optimization. Korean J Chem Eng. 2017 Mar 1;34(3):628-41.

Beheshti Z, Shamsuddin SM. A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 2013 Mar 1;5(1):1-35.

Bozorg-Haddad O. Advanced optimization by nature-inspired algorithms. Springer Nature Singapore Pte Ltd.; 2018.

Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016 May 1;95:51-67.

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press; 1992.

Holland J. Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and artificial intelligence. 1975.

Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim. 1997 Dec;11(4):341-59.

Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department; 2005 Oct.

Kennedy J, Eberhart R. Particle swarm optimization. InProceedings of ICNN'95-international conference on neural networks 1995 Nov 27 (Vol. 4, pp. 1942-1948). IEEE.

Yang XS. Flower pollination algorithm for global optimization. InInternational conference on unconventional computing and natural computation 2012 Sep 3 (pp. 240-249). Springer, Berlin, Heidelberg.

Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct. 2016 Jun 1;169:1-2.

Gandomi AH, Yang XS, Alavi AH, Talatahari S. Bat algorithm for constrained optimization tasks. Neural Comput & Applic. 2013 May;22(6):1239-55.

Simon D. Biogeography-based optimization. IEEE transactions on evolutionary computation. 2008 Mar 21;12(6):702-13.

Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. simulation. 2001 Feb;76(2):60-8.

Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design. 2011 Mar 1;43(3):303-15.

Savsani P, Savsani V. Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model. 2016 Mar 1;40(5-6):3951-78.

Van Laarhoven PJ, Aarts EH. Simulated annealing. InSimulated annealing: Theory and applications 1987 (pp. 7-15). Springer, Dordrecht.

Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. 2012 Nov 1;110:151-66.

Salimi H. Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based Systems. 2015 Feb 1;75:1-8.

Yang XS. Nature-inspired metaheuristic algorithms. Luniver press; 2010.

Sukpancharoen S, Srinophakun TR, Aungkulanon P. Grey Wolf Optimizer (GWO) with Multi-Objective Optimization for Biodiesel Production from Waste Cooking Oil Using Central Composite Design (CCD). International Journal of Mechanical Engineering and Robotics Research. 2020 Aug;9(8).

Sukpancharoen S, Srinophakun TR, Hirunlabh J, Rattanachoung N. The Use of Factorial Design to Improve a Harmony Search Algorithm to Synthesize Heat-Integrated Distillation Sequences. InKey Engineering Materials 2018 (Vol. 777, pp. 218-225). Trans Tech Publications Ltd.

Tariq F, Alelyani S, Abbas G, Qahmash A, Hussain MR. Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm. Energies. 2020 Jan;13(23):6225.

Jiang X, Li S. Beetle antennae search without parameter tuning (BAS-WPT) for multi-objective optimization. arXiv preprint arXiv:1711.02395. 2017 Nov 7.

Zhao W, Wang L, Zhang Z. A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Gener Comp Sy. 2019 Feb 1;91:601-10.

Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener Comp Sy. 2019 Dec 1;101:646-67.

Gomes GF, da Cunha SS, Ancelotti AC. A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng Comput. 2019 Apr;35(2):619-26.

Dhiman G, Kumar V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst. 2019 Feb 1;165:169-96.

Zervoudakis K, Tsafarakis S. A mayfly optimization algorithm. Comput Ind Eng. 2020 Jul 1;145:106559.

Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst Appl. 2020 Aug 15;152:113377.

Mohamed AA, Hassan SA, Hemeida AM, Alkhalaf S, Mahmoud MM, Eldin AM. Parasitism–Predation algorithm (PPA): A novel approach for feature selection. Ain Shams Engineering Journal. 2020 Jun 1;11(2):293-308.

Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Gener Comp Sy. 2020 Oct 1;111:300-23.

Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intel. 2020 Apr 1;90:103541.

Lennard-Jones JE. On the determination of molecular fields. II. From the equation of state of gas. Proc. Roy. Soc. A. 1924;106:463-77.

Macdonald SM, Mason CF. Predation of migrant birds by gulls. Brit Birds. 1973;66:361-3.

Howard FL. The life history of Physarum polycephalum. Am J Bot. 1931 Feb 1:116-33.

Kessler D. Plasmodial structure and motility. Cell biology of Physarum and Didymium/edited by Henry C. Aldrich, John W. Daniel. 1982.

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE T Evolut Comput. 1997 Apr;1(1):67-82.

Jamil M, Yang XS. A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation. 2013 Jan 1;4(2):150-94.

Salthouse TA. The complexity of age× complexity functions: Comment on Charness and Campbell (1988).

Edgar TF, Himmelblau DM, Lasdon LS. Optimization of chemical processes. 2001.

Vanderplaats GN. Design Optimization Tools (DOT) Users Manual, Version 4.20. VR&D, Colorado. 1995.