An Observation on the Natural Partial Order of Transformation Semigroups Restricted by an Equivalence Relation

Main Article Content

Nares Sawatraksa
Piyaporn Tantong

Abstract

Let  gif.latex?T(X) be the full transformation semigroup of a set gif.latex?X . We consider the subsemigroup of  gif.latex?T(X) defined by gif.latex?E(X,\sigma)=\{\alpha\in&space;T(X):&space;\forall&space;x,y\in&space;X,&space;(x,y)\in\sigma&space;\;\text{implies}\;&space;x\alpha=y\alpha\}  for an arbitrary equivalence relation gif.latex?\sigma  on gif.latex?X . The natural partial order on the largest regular subsemigroup of gif.latex?E(X,\sigma)  is discussed in this paper, and we characterize when two regular elements of  gif.latex?E(X,\sigma) are related under this order. Also, their maximal, minimal and covering elements are described.

Article Details

How to Cite
1.
Sawatraksa N, Tantong P. An Observation on the Natural Partial Order of Transformation Semigroups Restricted by an Equivalence Relation. Prog Appl Sci Tech. [internet]. 2022 Apr. 28 [cited 2025 Jan. 19];12(1):17-22. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/246019
Section
Mathematics and Applied Statistics

References

Vagner V. Generalized group. Dokl Akad Nauk SSSR. 1952 ;84: 1119–22.

Nambooripad K. The natural partial order on a regular semigroup. Proceeding of the Edinburgh Mathematical Society; 1980 (23): 249–60.

Mitsch H. A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384–388.

Doss C. Certain equivalence relations in transformation semigroups [MS. Thesis]. Knoxville (USA): University of Tennessee;1955.

Howie JM. Fundamentals of semigroup theory. Oxford university Press, New York, 1995.

Han X, Sun L. A natural partial order on certain semigroups of transformations restricted by an Equivalence. Bulletin of the Iranian Mathematical Society. 2018; 1–9.

Sun L, Pei H, Cheng Z. Naturally ordered transformation semigroups preserving an equivalence. Bull. Austral. Math, Soc. 2008; 78: 117–28.

Kowol G, Mitsch H. Naturally ordered transformation semigroups. Monatshefte für Mathematik. 1986;102(2): 115–38.

Namnak C, Laysirikul E. Natural partial order on a semigroup of self-E-preserving transformations. Scientific Research and Essays. 2013 8(1): 39–42.

Sullivan RP, Mendes-Goncalves S. Semigroups of transformations restricted by an equivalence. Cent. Eur. J. Math. 2010; 8: 1120–31.

Sun L, Wang L. Abundance of semigroups of transformations restricted by an equivalence. Comm. Algebra. 2016; 44(5): 1829–35.

Sawatraksa N, Namnak C. Remark on isomorphisms of transformation semigroups restricted by an equivalence relation. Commun. Korean Math. Soc. 2018; 33(3): 705–10.

Sawatraksa N, Namnak C, Laysirikul E. Left regular and right regular elements of the semigroup of transformations restricted by an equivalence. Naresuan University journal Science and Technology. 2018; 26(4): 89–93.