Solutions of the Pell equation x2-Dy2=+-N

Main Article Content

Aruntida Sichiangha
Piyanut Puangjumpa

Abstract

In this paper, we obtained some formulas for the integer solutions of the Pell equation gif.latex?x^{2}-Dy^{2}=&space;N  and the negative Pell equation gif.latex?x^{2}-Dy^{2}=&space;-N where gif.latex?D>1 is a non-square integer and gif.latex?N is a positive integer.

Article Details

How to Cite
1.
Sichiangha A, Puangjumpa P. Solutions of the Pell equation x2-Dy2=+-N. Prog Appl Sci Tech. [Internet]. 2022 Nov. 8 [cited 2024 Dec. 17];12(3):7-14. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/247113
Section
Mathematics and Applied Statistics

References

Chanduol A. The Pell Equation . Advances in Pure Mathematics. 2011;1:16-22.

Kaplan P, Williams, KS. Pell’s Equation and Continued Fractions. Journals of Number Theory. 1986;23:169-182.

Matthews K. The Diophantine Equation . Expositiones Mathematicae. 2000;18:323-331.

Ramya D, Seethalakshmi V, Durai AD. The Pell Equation . International Journal of Computer & Organization Trends. 2015;19(1):57-59.

Shabani AS. The Proof of Two Conjectures Related to Pell’s Equation . International Journal of Computational and Mathematical Sciences. 2008;2(1):24-27.

Tekcan A. Pell Equation , II. Bulletin of the Irish mathematical Society. 2004;54:73-89.

Tekcan A The Pell Equation . Applied Mathematical Sciences. 2007;1(8):363-369.