Effect of Bio-Liquid Fertilizer from Saltpan Residual on the Gamma-Oryzanol Content of Germinated Brown Rice (Thai Pigmented Rice)

Main Article Content

Thitaya Sornkhwan
Chakorn Chinvongamorn
Sompong Sansenya

Abstract

gif.latex?\gamma-Oryzanol has been identified from rice grains. The gif.latex?\gamma-oryzanol accumulation had affected by genotype and environmental factors. Salinity conditions had affected the growth and bioactive compounds in rice. Saltpan residual is the mix of microbiome, algae, and salt produced from the saline harvest period. In this study, we produced the Bio-liquid fertilizer from saltpan residual. The gif.latex?\gamma-oryzanol content of Thai pigmented rice cultivars treated and un-treated with Bio-liquid fertilizer was investigated.  The results reveal that the black and purple pigmented rice cultivars have higher content than red rice cultivars. The highest gif.latex?\gamma-oryzanol was obtained from Khao Hom Mali-Nin (black rice) with 475.03 ± 13.96 µg/g. Germination times had affected the g-oryzanol content of germinated pigmented rice but variable depending on the rice cultivars. The pigmented rice seeds were treated with Bio-liquid fertilizer and the germination times were 12 to 24 h for Khao RiceBerry, 12 to 36 h for Khao Mali-Komen Surin and 48 h for Khao Hom Mali-Nin had affected the gif.latex?\gamma-oryzanol content higher than the rice seeds un-treated with Bio-liquid fertilizer. The results indicate that the potential of Bio-liquid fertilizer from saltpan residual can be used for application in the fertilizer industry and for enhancing the bioactive compound in rice grains.

Article Details

How to Cite
1.
Sornkhwan T, Chinvongamorn C, Sansenya S. Effect of Bio-Liquid Fertilizer from Saltpan Residual on the Gamma-Oryzanol Content of Germinated Brown Rice (Thai Pigmented Rice). Prog Appl Sci Tech. [Internet]. 2022 Aug. 19 [cited 2024 Apr. 20];12(2):6-13. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/247144
Section
Pure and Applied Chemistry

References

Fukagawa N.K., Ziska L.H. Rice: Importance for global nutrition. J. Nutr. Sci. Vitaminol. 2019;65:S2-S3.

Wongsa P. Phenolic compounds and potential health benefits of pigmented rice. Rec. Adv. Rice Res. 2020;4:19-21.

Amrinola W., Sitanggang A.B., Kusnandar F., Budijanto S. Characterization of pigmented and non-pigmented flakes glutinous rice (ampiang) on chemical compositions, free fatty acids compositions, amino acids compositions, dietary fiber content, and antioxidant properties. Food Sci. Technol. 2021;42: e86621.

Tiozon R.J.N., Sartagoda K.J.D., Fernie A.R., Sreenivasulu N. The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Crit. Rev. Food Sci. Nutr. 2021;28:1-28.

Kraithong S., Rawdkuen S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018;79:259-266.

Boonsit P., Pongpiachan P., Julsrigival S., Karladee D. Gamma oryzanol content in glutinous purple rice landrace varieties. Chiang Mai Univ. J. Nat. Sci. 2010;9: 151-157.

Masuzaki H., Kozuka C., Okamoto S., Yonamine M., Tanaka H., Shimabukuro M. Brown rice‐specific γ‐oryzanol as a promising prophylactic avenue to protect against diabetes mellitus and obesity in humans. J. Diabetes Investig. 2019;10:18-25.

Ramazani E., Akaberi M., Emami S.A., Tayarani-Najaran Z. Biological and Pharmacological Effects of Gamma-oryzanol: An Updated Review of the Molecular Mechanisms. Curr. Pharm. Des. 2021;27:2299-2316.

Kaneko R., Tsuchiya T. New compound from rice bran oil. J. Soc. Chem. Ind, Japan. 1954;57:526-529.

Diack M., Saska M. Separation of vitamin E and γ‐oryzanols from rice bran by normal‐phase chromatography. J. Am. Oil Chem. Soc. 1994;71:1211-1217.

Bergman C.J., Xu Z. Genotype and environment effects on tocopherol, tocotrienol, and γ‐oryzanol contents of Southern US rice. Cereal Chem. 2003;80: 446-449.

Kim H.W., Kim J.B., Cho S.M., Cho I.K., Li Q.X., Hwang K.A. Characterization and quantification of γ-oryzanol in grains of 16 Korean rice varieties. Int. J. Food Sci. Nutr. 2015;66:166-174.

Chinvongamorn C., Sansenya S. The γ-oryzanol content of Thai rice cultivars and the effects of gamma irradiation on the γ-oryzanol content of germinated Thai market rice. Orient. J. Chem. 2020;36:812-818.

Tung Y.H., Ng L.T. Effects of Soil Salinity on Tocopherols, Tocotrienols, and γ‐Oryzanol Accumulation and their Relation to Oxidative Stress in Rice Plants. Crop Sci. 2016;56:3143-3151.

Thammapat P., Meeso N., Siriamornpun S. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice. Food Chem. 2015; 175: 218-224.

Wilms R., Sass H., Köpke B., Köster J., Cypionka H., Engelen B. Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl. Environ. Microbiol. 2006;72:2756-2764.

Weingarten E.A., Lawson L.A., Jackson C.R. The saltpan microbiome is structured by sediment depth and minimally influenced by variable hydration. Microorganisms. 2020;8:538.

Khan M.A. Gul B., Weber D.J. Effect of salinity on the growth and ion content of Salicornia rubra. Commun. Soil Sci. Plant Anal. 2001; 32: 2965-2977.

Gontia-Mishra I., Sapre S., Tiwaei S. Diversity of halophilic bacteria and actinobacteria from India and their biotechnological applications. Indian J. Geo Mar. Sci. 2017;46:1575-1587.

Loganathan P., Nair S. Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int. J. Sys. Evol. Microbiol. 2004;54:1185-1190.

Huang S.H., Ng L.T. Quantification of tocopherols, tocotrienols, and γ-oryzanol contents and their distribution in some commercial rice varieties in Taiwan. J. Agri. Food Chem. 2011;59:11150-11159.

Sudtasarn G., Homsombat W., Chotechuen S., Chamarerk V. Quantification of Tocopherols, Tocotrienols and γ-Oryzanol Contents of Local Rice Varieties in Northeastern Thailand. J. Nutr. Sci. Vitaminol. 2019;65: S125-S128.

Sing S.X., Lee H.H., Wong S.C., Bong C.F.J. Yiu P.H. Ferulic acid, gamma oryzanol and GABA content in whole grain rice and their variation with bran colour. Emir. J. Food Agric. 2015;27:706-711.

Tsuzuki W., Komba S., Kotake-Nara E. Diversity in γ-oryzanol profiles of Japanese black-purple rice varieties. J. Food Sci. Technol. 2019;56:2778–2786.

Kiing I.C., Yi P.H., Rajan A., Wong, S.C. Effect of germination on γ-oryzanol content of selected sarawak rice cultivars. Am. J. Appl. Sci. 2009;6:1658.

Shahzad R., Harlina P.W., Ewas M., Zhenyuan P., Nie X., Gallego P.P., Jia H. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativa L.) by suppression of ABA levels and upregulation of secondary metabolites. J. Plant Interac. 2021;16:533-549.

Tisarum R., Theerawitaya C., Samphumphuang T., Polispitak K., Thongpoem P., Singh H.P., Cha-Um S. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front. Plant Sci. 2020;11:348.

He C.E., Lu L.L., Jin Y., Wei J.H., Christie P. Effects of nitrogen on root development and contents of bioactive compounds in Salvia miltiorrhiza Bunge. Crop Sci. 2013; 53:2028-2039.

Amarowicz R., Cwalina-Ambroziak B., Janiak M.A., Bogucka B. Effect of N fertilization on the content of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.) tubers and their antioxidant capacity. Agronomy. 2020;10: 1215.