The Differential Equation in Terms of Jacobsthal and Jacobsthal – Lucas Numbers

Main Article Content

Mongkol Tatong

Abstract

In this paper, we study Jacobsthal sine, Jacobsthal-Lucas sine, Jacobsthal cosine, Jacobsthal-Lucas cosine, Jacobsthal tangent, Jacobsthal-Lucas tangent, Jacobsthal cotangent, Jacobsthal-Lucas cotangent, Jacobsthal secant, Jacobsthal-Lucas secant, Jacobsthal cosecant, and Jacobsthal -Lucas cosecant. Furthermore, we establish some identities of Jacobsthal sine, Jacobsthal-Lucas sine, Jacobsthal cosine, Jacobsthal-Lucas cosine, Jacobsthal tangent, Jacobsthal-Lucas tangent, Jacobsthal cotangent, Jacobsthal-Lucas cotangent, Jacobsthal secant, Jacobsthal-Lucas secant, Jacobsthal cosecant, and Jacobsthal -Lucas cosecant.

Article Details

How to Cite
1.
Tatong M. The Differential Equation in Terms of Jacobsthal and Jacobsthal – Lucas Numbers. Prog Appl Sci Tech. [internet]. 2023 Feb. 9 [cited 2025 Jan. 19];13(1):1-6. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/247539
Section
Mathematics and Applied Statistics

References

Cook CK, Bacon MR. Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. Ann. Math. Inf. 2013;41:27-39.

Daykin DE, Dresel LAG. Identities for Products of Fibonacci and Lucas Numbers. Fq.Math.Ca. 1967;5(4):367 -370.

Hoggatt VE. Fibonacci Numbers from a Differential Equation. Fq.Math.Ca. 1964; 2(3):176.

Horadam AF. A Generalized Fibonacci Sequence. Am. Math. Mon. 1961;68(5): 455-459.

Kovacs I. An Analytic Aspect of the Fibonacci Sequence. Al.Journal.Math. 2002;18(2):17-21.

Ray PK. A Trigomometry Approach to Balancing Numbers and Their Related Sequences. Sigmae 2016;5(2):1-6.

Smith RM. Introduction to analytic fibonometry. Al.Journal.Math. 2002;25(2): 27-36.