A Characterization of S_beta-continuous Fixed Point Property

Main Article Content

Sajjarak Ladsungnern
Ardoon Jongrak

Abstract

In this paper, we define and investigate the gif.latex?\dpi{120}&space;S_{\beta&space;}-continuous retraction and the gif.latex?\dpi{120}&space;S_{\beta&space;}-continuous fixed point property which apply the gif.latex?\dpi{120}&space;S_{\beta&space;}-continuity in (6). The study shown that, for the regular and locally indiscrete topological space gif.latex?\left&space;(&space;X,\tau&space;\right&space;) with the gif.latex?\dpi{120}&space;S_{\beta&space;}-continuous fixed point property, if a topology gif.latex?\sigma for gif.latex?X is stronger than gif.latex?\tau and for every open subset gif.latex?G in gif.latex?\sigma with the closure of gif.latex?G in gif.latex?\sigma and the closure of gif.latex?G in gif.latex?\tau are equal, then gif.latex?\left&space;(&space;X,\sigma&space;\right&space;) has the fixed point property.

Article Details

How to Cite
1.
Ladsungnern S, Jongrak A. A Characterization of S_beta-continuous Fixed Point Property. Prog Appl Sci Tech. [internet]. 2023 Jul. 20 [cited 2025 Jan. 19];13(2):9-16. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/247828
Section
Mathematics and Applied Statistics

References

Adams CC, Franzosa RD. Introduction to topology pure and applied. New Jersey: Upper saddle river; 2008.

Cammarolo F, Noiri T. On the delta-continuous fixed point property. Int. J. Math. Math. Sci. 1990;13(1):45-50.

Connell EH. Property of fixed point spaces. Proc. Am. Math. Soc. 1959;10(3):974-979.

Dugundji J. Topology. Boston: Allyn and Bacon; 1966.

Jongrak A. Some properties of S_beta-open Mappings. The proceedings of annual meeting in mathematics. 2017;22:TPO031-035.

Khalaf AB, Ahmed NK. S_beta-open sets and S_beta-continuity in topological spaces. Thai J. Math. 2013;11(2):319-335.

Levine N. Semi-open sets and semi-continuity in topological spaces. Am. Math. Mon. 1963;29(70):36-4.

Monsef ME, Deeb SN, Mahmooud RA. beta-open sets and beta-continuous mappings. Bullentin of the Faculty of Science, Assiut University. 1983;12(1):77-90.

Puturong N. On strongly theta-semi- continuous functions. Thai J. Math. 2007;5(3):11-23.