Some Matrices with Padovan Q-matrix and the Generalized Relations

Main Article Content

Mongkol Tatong

Abstract

In this paper, we establish a new gif.latex?Q-matrix for Padovan numbers and the multiplies between the gif.latex?Q-matrix and the gif.latex?A-matrix. Moreover, we investigate the gif.latex?n^{th} of gif.latex?Q_{2}, the gif.latex?n^{th} of  gif.latex?Q_{1} multiply the gif.latex?A-matrix, and the gif.latex?n^{th} of  gif.latex?Q_{2} multiply the gif.latex?A-matrix. Finally, we use these matrices to obtain elementary identities for Padovan, Perrin, and relations between numbers.

Article Details

How to Cite
1.
Tatong M. Some Matrices with Padovan Q-matrix and the Generalized Relations. Prog Appl Sci Tech. [Internet]. 2024 Apr. 29 [cited 2025 Jan. 6];14(1):82-6. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/252531
Section
Mathematics and Applied Statistics

References

Basin S.L., Hoggatt Jr V.E. A Primer on the Fibonacci Sequence, Part II. Fq.Math.Ca. 1963;1(2):61-8.

Kannaika K., Benjawan R., Supunnee S. Some Mathices in Term of Perrin and Padovan Sequences. J. Math. Sci. 2019; 17(3):767-74.

Kritsana S. Padovan Q-Matrix and the Generalized Relations. Appl. Math. Sci. 2013;7(56):2777-80.

Kritsana S. Matrices formula for Padovan and Perrin sequences. Appl. Math. Sci. 2013;7(142):7093-96.

Pisuda S., Songpol N., Taweesak P., Rossukhon A., Sa-at M. Matrices which have similar properties to Padovan Q-Matrix and its generalized relations. SNRUJST. 2015;7(2):90-4.

Shannon A. G., Anderson P. G., Horadam A. F. Properties of Cordonnier, Perrin and Van der Laan numbers. Int. J. Math. Educ. Sci. Technol. 2006;37(7):825-31.