Some Properties of Subspaces over Residue Class Rings

Main Article Content

Juthamas Sangwisat
Siripong Sirisuk

Abstract

Let gif.latex?\mathbb{Z}_{p^s} denote the residue class ring where gif.latex?p is a prime number and gif.latex?s  is a positive integer. For gif.latex?n\geq1, a free submodule of the gif.latex?\mathbb{Z}_{p^s}-module gif.latex?\mathbb{Z}_{p^s}^n  that has a basis is called a subspace of gif.latex?\mathbb{Z}_{p^s}^n .  In this paper, we present some properties of subspaces regarding their dimensions and the joins of subspaces of gif.latex?\mathbb{Z}_{p^s}^n .

Article Details

How to Cite
1.
Sangwisat J, Sirisuk S. Some Properties of Subspaces over Residue Class Rings. Prog Appl Sci Tech. [Internet]. 2024 Jul. 31 [cited 2024 Nov. 15];14(2):12-5. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/253316
Section
Mathematics and Applied Statistics

References

Calderbank AR, McGuire G, Kumar PV, Helleseth T. Cyclic codes over Z_4, locator polynomials and Newton’s identities. IEEE Trans Inform Theory. 1996;42:217-26.

Helleseth T. Codes over Z_4. In: Alt, H. (eds) Computational Discrete Mathematics. Lecture Notes in Computer Science, vol 2122. Berlin, Heidelberg: Springer; 2001.

Van Lint JH. Codes over Z_4. In: Introduction to Coding Theory. Graduate Texts in Mathematics, vol 86. Berlin, Heidelberg: Springer; 1999.

Kyureghyan G, Kwon SM. Codes over the ring Z_p^s: Bounds on the minimum distance. Finite Fields Appl. 2010; 16(2):144-163.

Huang LP, Lv B, Wang K. Automorphisms of Grassmann graphs over a residue class ring. Discrete Math. 2020;343(4):111693.

Huang, LP, Lv B, Wang K. Erdos-Ko-Rado theorem, Grassmann graphs and p^s-Kneser graphs for vector spaces over a residue class ring. J Comb Theory Ser A. 2019;164:125-158.

Guo J. Erdos-Ko-Rado theorem for matrices over residue class rings. Graphs Combin. 2021;37(6):1-14.

Huang LP. Generalized bilinear forms graphs and MRD codes over a residue class ring. Finite Fields Appl. 2018;51:306-324.

Huang LP, Su H, Tang G, Wang JB. Bilinear forms graphs over residue class rings. Linear Algebra Appl. 2017;253:13-32.

Li F, Wang K, Guo J. More on symplectic graphs modulo p^n. Linear Algebra Appl. 2017;438(6):2651-2660.

Meemark Y, Prinyasart T. On symplectic graphs modulo p^n. Discrete Math. 2011;311(17):1874-1878.

McDonald BR. Finite Rings with Identity. New York: Marcel Dekker; 1974.

McDonald BR. Geometric Algebra over Local Rings. New York: Marcel Dekker; 1976.

McCoy NH.: Rings and Ideals. Washington, DC: The Mathematical Association of America; 1948.

Wan ZX. Lectures on Finite Fields and Galois Rings. Singapore: World Scientific Publishing Company; 2003.

Sirisuk S, Meemark Y. Generalized symplectic graphs and generalized orthogonal graphs over finite commutative rings. Linear Multilinear Algebra. 2019;67(12):2427-2450.