Fecal Colonization Rate of Carbapenem-resistant Enterobacterales among Volunteers in a Community of Raroeng Subdistrict, Wang Nam Khiao District, Nakhon Ratchasima Province, Thailand
Main Article Content
Abstract
Carbapenem-resistant Enterobacterales (CRE) have emerged as an important global public health problem due to their ability to cause high morbidity and mortality rates. CRE have the potential to spread not only in hospital settings but also in the community. Based on our knowledge, no investigation has been conducted of CRE presence among people in Raroeng Subdistrict, Wang Nam Khiao District, Nakhon Ratchasima Province, Thailand. This study aimed to clarify the CRE colonization status among volunteers in the community. This cross-sectional study was conducted in March 2023. A total of 121 fecal samples were obtained from the volunteers participating in this study. CRE screening, identification and characterization were performed using culture methods, matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF MS) and phenotypic and genotypic assays for carbapenemase production. Our results revealed that the fecal colonization rate of CRE was 1.65% (n=2). CRE isolates were identified as Klebsiella pneumoniae. Carbapenemase types were revealed as class B metallo-beta-lactamase and class D serine-carbapenemase, produced by blaNDM and blaOXA-48, respectively. Additional antimicrobial resistant genes including beta-lactam resistant genes (blaCTX-M, blaSHV, blaTEM) and an aminoglycoside resistant gene (aac(6’)-Ib), were also found among the CRE isolates. No significant potential factors related to CRE colonization rate were identified. Our study indicated that CRE colonization in this community is worrisome. Surveillance of CRE colonization and strict implementation of infection control practices are required to restrict the spread of CRE in communities.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Adeolu M, Alnajar S, Naushad S, Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66(12):5575-99.
Watkins RR, Bonomo RA. Increasing prevalence of carbapenem-resistant Enterobacteriaceae and strategies to avert a looming crisis. Expert Rev Anti Infect Ther. 2013;11(6):543-5.
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments. Front Microbiol. 2022;13:960748.
Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol. 2010;48(4):1019-25.
Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80.
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263-72.
van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8(4): 460-9.
Lunha K, Chanawong A, Lulitanond A, Wilailuckana C, Charoensri N, Wonglakorn L, Saenjamla P, Chaimanee P, Angkititrakul S, Chetchotisakd P. High-level carbapenem-resistant OXA-48-producing Klebsiella pneumoniae with a novel OmpK36 variant and low-level, carbapenem-resistant, non-porin-deficient, OXA-181-producing Escherichia coli from Thailand. Diagn Microbiol Infect Dis. 2016;85(2):221-6.
Netikul T, Sidjabat H, Paterson D, Kiratisin P. Emergence of novel bla(KPC-13) among carbapenem-resistant Enterobacteriaceae in Thailand. Int J Antimicrob Agents. 2014;44(6):568-9.
Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321-31.
Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. 2020;8:13.
Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440-58.
Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791-8.
Woodford N, Tierno PM Jr, Young K, Tysall L, Palepou MF, Ward E, et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother. 2004;48(12):4793-9.
Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: detection and antimicrobial therapy. Front Microbiol. 2019;10:1823.
Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014;2014:249856.
Netikul T, Kiratisin P. Genetic characterization of carbapenem-resistant Enterobacteriaceae and the spread of carbapenem-resistant Klebsiella pneumoniae ST340 at a university hospital in Thailand. PLoS One. 2015;10(9).
Paveenkittiporn W, Lyman M, Biedron C, Chea N, Bunthi C, Kolwaite A, et al. Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016-2018. Antimicrob Resist Infect Control. 2021;10(1):88.
Takeuchi D, Kerdsin A, Akeda Y, Sugawara Y, Sakamoto N, Matsumoto Y, et al. Nationwide surveillance in Thailand revealed genotype-dependent dissemination of carbapenem-resistant Enterobacterales. Microb Genom. 2022;8(4):000797.
Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60-7.
Kelly AM, Mathema B, Larson EL. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents. 2017;50(2):127-34.
Wangchinda W, Thamlikitkul V, Watcharasuwanseree S, Tangkoskul T. Active surveillance for carbapenem-resistant Enterobacterales (CRE) colonization and clinical course of CRE colonization among hospitalized patients at a university hospital in Thailand. Antibiotics (Basel). 2022;11(10):1401.
Davari N, Khashei R, Pourabbas B, Nikbin VS, Zand F. High frequency of carbapenem-resistant Enterobacteriaceae fecal carriage among ICU hospitalized patients from Southern Iran. Iran J Basic Med Sci. 2022;25(12):1416-23.
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 33rd CLSI supplement M100. Wayne (PA): Clinical and Laboratory Standards Institute; 2023.
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263-72.
EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards). Scientific opinion on carbapenem resistance in food animal ecosystems. EFSA J. 2013;11(12):3501.
Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, et al. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother. 2017;61(2).
Webb HE, Bugarel M, den Bakker HC, Nightingale KK, Granier SA, Scott HM, Loneragan GH. Carbapenem-resistant bacteria recovered from faeces of dairy cattle in the high plains region of the USA. PLoS One. 2016;11(1).
Tesfa T, Mitiku H, Edae M, Assefa N. Prevalence and incidence of carbapenem-resistant K. pneumoniae colonization: systematic review and meta-analysis. Syst Rev. 2022;11(1):240.
Atterby C, Osbjer K, Tepper V, Rajala E, Hernandez J, Seng S, et al. Carriage of carbapenemase- and extended-spectrum cephalosporinase-producing Escherichia coli and Klebsiella pneumoniae in humans and livestock in rural Cambodia; gender and age differences and detection of blaOXA-48 in humans. Zoonoses Public Health. 2019;66(6):603-17.
Antony S, Ravichandran K, Kanungo R. Multidrug-resistant Enterobacteriaceae colonizing the gut of adult rural population in South India. Indian J Med Microbiol. 2018;36(4):488-93.
Centers for Disease Control and Prevention (CDC). Healthcare-Associated Infections (HAIs): CRE Technical Information [Internet]. Atlanta (GA): CDC; 2022 Jun 8 [cited 2022 Nov 3]. Available from: https://www.cdc.gov/hai/organisms/cre/technical-info.html
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2).
Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother. 2020;64(10).
Caliskan-Aydogan O, Alocilja EC. A review of carbapenem resistance in Enterobacterales and its detection techniques. Microorganisms. 2023;11(6):1491.
Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15-22.
Zowawi HM, Balkhy HH, Walsh TR, Paterson DL. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev. 2013;26(3):361-80.
Abbasi E, Ghaznavi-Rad E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in central Iran. BMC Microbiol. 2023;23(1):98.
Shahid M, Saeed NK, Ahmad N, Shadab M, Joji RM, Al-Mahmeed A, et al. Molecular screening of carbapenem-resistant K. pneumoniae (CRKP) clinical isolates for concomitant occurrence of beta-lactam genes (CTX-M, TEM, and SHV) in the Kingdom of Bahrain. J Clin Med. 2023;12(24):7522.
Argente M, Miró E, Martí C, Vilamala A, Alonso-Tarrés C, Ballester F, et al. Molecular characterization of OXA-48 carbapenemase-producing Klebsiella pneumoniae strains after a carbapenem resistance increase in Catalonia. Enferm Infecc Microbiol Clin (Engl Ed). 2019;37(2):82-8.
El-Defrawy I, Gamal D, El-Gharbawy R, et al. Detection of intestinal colonization by carbapenem-resistant Enterobacteriaceae (CRE) among patients admitted to a tertiary care hospital in Egypt. Egypt J Med Hum Genet. 2022;23:83.
Yeonju L, Kang JE, Ham JY, Lee JG, Rhie SJ. Risk factors of carbapenem-resistant Enterobacteriaceae acquisition at a community-based hospital. Korean J Clin Pharm. 2020;30(2):120-6.
Yi J, Kim KH. Identification and infection control of carbapenem-resistant Enterobacterales in intensive care units. Acute Crit Care. 2021;36(3):175-84.
Caudell MA, Castillo C, Santos LF, Grajeda L, Romero JC, Lopez MR, et al. Risk factors for colonization with extended-spectrum cephalosporin-resistant and carbapenem-resistant Enterobacterales among hospitalized patients in Guatemala: An antibiotic resistance in communities and hospitals (ARCH) study. IJID Reg. 2024;11:100361.
Schwartz KL, Morris SK. Travel and the spread of drug-resistant bacteria. Curr Infect Dis Rep. 2018;20(9):29.
World Health Organization. Evidence of hand hygiene to reduce transmission and infections by multidrug-resistant organisms in health-care settings [Internet]. [accessed on 3 November 2017]. Available from: http://www.who.int/gpsc/5may/MDRO_literature-review.pdf.
Salomão MC, Guimarães T, Duailibi DF, Perondi MBM, Letaif LSH, Montal AC, et al. Carbapenem-resistant Enterobacteriaceae in patients admitted to the emergency department: prevalence, risk factors, and acquisition rate. J Hosp Infect. 2017;97(3):241-6.
Mohan B, Prasad A, Kaur H, Hallur V, Gautam N, Taneja N. Fecal carriage of carbapenem-resistant Enterobacteriaceae and risk factor analysis in hospitalized patients: A single center study from India. Indian J Med Microbiol. 2017;35(4):555-62.
Shu LB, Lu Q, Sun RH, Lin LQ, Sun QL, Hu J, Zhou HW, Chan EW, Chen S, Zhang R. Prevalence and phenotypic characterization of carbapenem-resistant Klebsiella pneumoniae strains recovered from sputum and fecal samples of ICU patients in Zhejiang Province, China. Infect Drug Resist. 2018;12:11-8.