On the Diophantine Equation 1/w+1/x+1/y+1/z=u/u+1

Main Article Content

Suton Tadee

Abstract

In 2023, Wongsanurak and Duangdai found all positive integer solutions of the Diophantine equation equation , when equation and equation are positive integers with equation and equation. In this work, by using an elementary approach, we solved the Diophantine equation for any positive integer equation and  equation. The results of the research found that the Diophantine equation under the above conditions has twenty-seven positive integer solutions.

Article Details

How to Cite
1.
Tadee S. On the Diophantine Equation 1/w+1/x+1/y+1/z=u/u+1. Prog Appl Sci Tech. [internet]. 2025 Apr. 29 [cited 2026 Feb. 11];15(1):1-5. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/257129
Section
Mathematics and Applied Statistics

References

Sándor, J. A note on Diophantine equation. Notes Number Theory Discrete Math. 2013;19(4):1–3.

Zhao, W., Lu, J., Wang, L. On the integral solutions of the Egyptian fraction equation a/p=1/x+1/y+1/z. AIMS Math. 2021;6(5): 4930–7.

Sándor, J., Atanassov, K. On a Diophantine equation arising in the history of mathematics. Notes Number Theory Discrete Math. 2021;27(1):70–5.

Tadee, S., Poopra, S. On the Diophantine equation 1/x+1/y+1/z=1/n. Int J Math Comput Sci. 2023;18(2):173–7.

Tadee, S. All solutions of the Diophantine equation 1/x+1/y+1/z=u/(u+2). J Appl Res Sci Technol. 2024;23(2):1–5.

Yuan, X. On the Diophantine equation 4/n=1/x+1/y+1/z. J Algebra Number Theory Appl. 2024;63(5):459–80.

Bai, T. On 1/w+1/x+1/y+1/z=1/2 and some of its generalizations. J Inequal Appl. 2018; (197)2018:1–13.

Atri, R. On the Diophantine equations 1/x+1/y+1/z=1/4 and 1/x+1/y+1/z+1/t=1/4. Int J Sci Res. 2022;11(1):573–4.

Wongsanurak, W., Duangdai, E. The natural number solutions of the Diophantine equation 1/w+1/x+1/y+1/z=u/(u+1). Acad J Sci Appl Sci. 2023;2:91–8. (in Thai)