Generalized DUS-Bilal Distribution: Properties and Applications

Main Article Content

Thanasate Akkanphudit

Abstract

In this article, we proposed a flexible version of the Bilal distribution using the generalized DUS transformation. Its properties are studied. Three methods of parameter estimation, including the maximum likelihood, Anderson-Daring, and Cramer-Von Mises techniques, are used to estimate unknown parameters. Real datasets are used to demonstrate the applicability of the proposed distribution using the three methods of parameter estimation.

Article Details

How to Cite
1.
Akkanphudit T. Generalized DUS-Bilal Distribution: Properties and Applications. Prog Appl Sci Tech. [internet]. 2025 Aug. 28 [cited 2025 Nov. 17];15(2):9-17. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/259700
Section
Mathematics and Applied Statistics

References

Abd-Elrahman AM. Utilizing ordered statistics in lifetime distributions production: a new lifetime distribution and applications. J Proba Stat Sci. 2013;11(2):153-64.

Abd-Elrahman AM. A new two-parameter lifetime distribution with decreasing, increasing or upside-down bathtub-shaped failure rate. Commun Stat-Theory Methods. 2017;46(18):8865-80.

Dinesh K, Umesh S, Sanjay Kumar S. A method of proposing new distribution and its application to Bladder cancer patients data. J Stat Appl Probab Lett. 2015;2:235-45.

Maurya SK, Kaushik A, Singh SK, Singh U. A new class of distribution having decreasing, increasing, and bathtub-shaped failure rate. Commun Stat-Theory Methods. 2017;46:10359-72.

AbuJarad MH, Khan AA, AbuJarad ESA. Bayesian survival analysis of generalized DUS exponential distribution. Austrian J Stat. 2020;49(5):80-95.

Irshad MR, Chesneau C, Nitin SL, Shibu DS, Maya R. The generalized DUS transformed log-normal distribution and its applications to cancer and heart transplant datasets. Mathematics. 2021;9(23):3113.

Akkanphudit T. Generalized DUS transformed Garima distribution: Properties, simulations and applications. Lobachevskii J Math. 2023;44(2):803-14.

R Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2025.

do Espirito Santo APJ, Mazucheli J. Comparison of estimation methods for the Marshall Olkin extended Lindley distribution. J Stat Comput Simul. 2014;85:3437-50.

Anderson TW, Darling DA. A test of goodness-of-fit. J Am Stat Assoc. 1954;49(268):765-9.

Anderson TW. On the distribution of the two-sample Cramer-von Mises criterion. Ann Math Stat. 1962;33(3):1148-59.

Hinkley D. On quick choice of power transformations. Appl Stat. 1977;26:67-9.

Korkmaz MC, Yousof HM, Rasekhi M, Hamedani GG. The odd Lindley Burr XII model: Bayesian analysis, classical inference and characterizations. Data Sci J. 2018;16: 327-54.

Kibria BG, Shakil M. A new five-parameter Burr system of distributions based on generalized Pearson differential equation. JSM Proceedings, Section on Physical and Engineering Sciences, 2011: 866-80.

Nichols MD, Padgett WJ. A bootstrap control chart for Weibull percentiles. Qual Reliab Eng. 2006;22:141-51.