BLACK GALINGALE DRYING USING HYBRID TECHNIQUES
Keywords:
Hot air drying, Infrared drying, Hot air drying, Infrared drying, Thin layer drying equationAbstract
Black galingale has medicinal properties and it is also an economic medicinal plant that can be developed into a variety of products. Therefore, this research aimed at studying the drying kinetics of black galingale by using 3 techniques as follows: hot air drying (HA), infrared drying (IR) and hot air combined with infrared drying (HA&IR). The experiment was conducted under the followings condition: drying air temperature of 45๐C and air velocity of 2.0 m/s. The black galingale was dried from the initial moisture content of 136.0 %d.b. to the final moisture content of 8.0 %d.b. The parameters used as criteria for investigating the drying performance are color quality, water activity, specific energy consumption, and mathematical models to predict drying kinetics. The experimental results showed that the moisture of black galingale decreased rapidly when it was activated with infrared energy. It was also found that IR, HA&IR and HA yielded the drying time of 515, 557 and 935 minutes, respectively. In terms of color quality, the color change of IR was lower than that for HA&IR and HA by 2.67 % and 21.46 %, respectively. Furthermore, it was found that the specific energy consumption of HA&IR was the lowest. For water activity, all drying techniques were in accordance with the standards of food drying. Finally, results revealed that the best mathematical model for predicting the drying kinetic of black galingale using HA, IR and HA&IR were Weibull distribution, Two-term and Weibull distribution, respectively.
References
Association of Official Analytical Chemists. (2000). Official methods of analysis.
(17th ed.). Maryland: Gaithersburg.
Aymen, E., Sami, K., Ilhem, H., & Abdelhamid, F. (2015). Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy, 77, 1-8.
Caparino, O.A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111, 135-148.
Corzo, O., Bracho, N., Pereira, A., & Vásquez, A. (2008). Weibull distribution for modeling
air drying of coroba slices. LWT- Food Science and Technology, 41, 2023-2028.
Dan, H., Pei, Y., Xiaohong, T., Lei, L., & Bengt, S. (2021). Application of infrared radiation in the drying of food products, Trends in Food Science & Technology, 110, 765-777.
Daniel, I.O., Norhashila, H., & Guangnan, C. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132-145.
Daniel, I.O., Norhashila, H., Khalina, A., Rimfiel, J., & Guangnan, C. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, 241, 75-87.
Darvishi, H., Azadbakht, M., Rezaeiasl, A., & Farhang, A. (2013). Drying characteristics of
sardine fish dried with microwave heating. Journal of the Saudi Society of Agricultural Sciences, 12, 121-127.
Faruq, A.A., Zhang, M., & Fan, D. (2019). Modeling the dehydration and analysis of dielectric properties of ultrasound and microwave combined vacuum frying apple slices. Drying Technology, 37(3), 409-423.
Gokhale, S.V., & Lele, S.S. (2011). Dehydration of red beet root (beta vulgaris) by hot air drying: process optimization and mathematical modeling. Food Science and Biotechnology, 20(4), 955-964.
Guo, Y., Wu, B., Guo, X., Ding, F., Pan, Z., & Ma, H. (2020). Effects of power ultrasound
enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. LWT- Food Science and Technology, 126, 109312.
Doi: 10.1016/j.lwt.2020.109312
Hajar, E., Mohammed, B., Rachid, T., & Bargach, M.N. (2018). Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun. Innovative Food Science and Emerging Technologies, 49, 58-64.
Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Trans ASAE, 17, 1167-1172.
Khampakool, A., Soisungwan, S., & Park, S. H. (2019). Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. Lebensmittel-Wissenschaft & Technologie, 99, 355-363.
Karthikeyan, A.K., & Murugavelh, S. (2018). Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renewable Energy, 128, 305-312.
Kaveh, M., Chayjan, R.A., Taghinezhad, E., Sharabiani, V.R., & Motevali, A. (2020). Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). Journal of cleaner production, 259, 120963. Doi: 10.1016/j.jclepro.2020.120963
Khuthadzo, M., & Tilahun S.W. (2021). The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality. Heliyon, 7, 1-15.
Kroehnke, J., Szadzinska, J., Stasiak, M., Radziejewska-Kubzdela, E., Bieganska-Marecik, R., & Musielak, G. (2018). Ultrasound- and microwave-assisted convective drying of carrots-process kinetics and product’s quality analysis. Ultrasonics Sonochemistry, 48, 249-258.
Muga, F.C., Marenya, M.O., & Workneh, T.S. (2021). Modelling the thin-layer drying kinetics of marinated beef during infrared-assisted hot air processing of biltong. International Journal of Food Science, 8819780. Doi: 10.1155/ 2021/8819780
Nathakaranakule, A., Paengkanya, S. & Soponronnarit, S. (2019). Durian chips drying using combined microwave techniques with step-down microwave power input. Food and Bioproducts Processing, 116, 105-117.
Onwude, D.I., Hashim, N., Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132-145.
Page, G. (1949). Factors influencing the maximum rates of air-drying shelled corn in thin layer. M.S. thesis, Department of Mechanical Engineering, Purdue University, West Lafayette, IN.
Papu, S., Singh, A., Jaivir, S., Sweta, S., Arya, A.M. & Singh, B.R. (2014). Effect of drying characteristics of garlic-A Review. Food Processing & Technology, 5(4), 1-6.
Pitakpawasutthi, Y., Palanuvej, C., & Ruangrungsi, N. (2018). Quality evaluation of Kaempferia parviflora rhizome with reference to 5, 7-dimethoxyflavone. Journal of Advanced Pharmaceutical Technology & Research, 9(1), 26-31.
Pekke, M.A., Pan, Z.L., Atungulu, G.G., Smith, G., & Thompson, J.F. (2013). Drying characteristics and quality of bananas under infrared radiation heating. International Journal of Agricultural and Biological Engineering, 6(3), 58-70.
Riadh, M.H., Ahmad, S.A.B., Marhaban, M.H. & Soh, A.C. (2015). Infrared heating in food drying: An overview. Drying Technology, 33(3), 322-335.
Sa-adchom, P., Swasdisevi, T., Nathakaranakule, A., & Soponronnarit, S. (2011). Mathematical model of pork slice drying using superheated steam. Journal of Food Engineering, 104, 499-507.
Sakare, P., Prasad, N., Thombare, N., Singh, R. & Sharma, S.C. (2020). Infrared drying of food materials: Recent advances. Food Engineering Reviews, 12, 381-398.
Silva, W.P., Silva, C.M.D.P.S., Gama, F.J.A., & Gomes, J.P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the Saudi Society of Agricultural Sciences, 13, 67-74.
Verma, L.R., Bucklin, R.A., Endan, J.B., Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Trans ASAE, 28, 296-301.
Vijayan, S., Arjunan, T.V., & Kumar, A. (2016). Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science and Emerging Technologies, 36, 59-67.
Vonggrachit, K. (2019). The government is preparing to push 4 top economic herbs. Retrieved from http://www.voicetv.co.th/read/Hk3DwZ0lQ
Wang, J., Law, C.L., Nema, P.K., Zhao, J.H., Liu, Z.L. Deng, L.Z., Gao, Z.J., & Xiao, H.W. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129-138.
Wang, Q., Li, S., Han, X., Ni, Y., Zhao, D., & Hao, J. (2019). Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave assisted drying methods. Lebensmittel-Wissenschaft & Technologie, 107, 236-242.
กิตติศักดิ์ วิธินันทกิตต์ และศรีมา แจ้คำ. (2562).แบบจำลองทางคณิตศาสตร์การอบแห้งข่าด้วยสุญญากาศร่วมกับรังสีอินฟราเรด.วารสารวิศวกรรมสารเกษมบัณฑิต, 9(3), 29-44.
ศรีมา แจ้คำ, กิตติศักดิ์ วิธินันทกิตต์ และเอกภูมิ บุญธรรม. (2564). การอบแห้งสมุนไพรด้วยระบบสุญญากาศร่วมกับรังสีอินฟราเรดและอากาศร้อน. วารสารวิชาการเทคโนโลยีอุตสาหกรรมและวิศวกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม, 3(1), 32-43.