Development of thermosensitive chitosan/collagen hydrogel with antibacterial properties using biosynthesized silver nanoparticles from aqueous extract of fingerroot for bone grafting

Main Article Content

Chanon Somjitkul
Ekarat Hitakomate
Chiravoot Pechyen
Panjaporn Wongwitthakakool

Abstract

Thermosensitive hydrogel has been developed and used in tissue engineering to promote bone regeneration and deliver active substances. This study aims to prepare and characterize chitosan/collagen hydrogel with antibacterial properties by incorporating biosynthesized silver nanoparticles (AgNP). The aqueous extract of fingerroot (Boesenbergia rotunda) was used as a reducing agent for AgNP synthesis. Thus, the AgNPs were characterized by spectrophotometry, morphological, and biological testing. The AgNPs were spherical with diameter ranges from 20-40 nm with inhibitory activity of Staphylococcus aureus and Pseudomonas aeruginosa. The synthesized AgNPs were mixed with chitosan/collagen hydrogel with concentrations of 1 % (w/v). The thermosensitive chitosan/collagen hydrogel filled with synthesized AgNP was investigated with rheological, structural, chemical, and biological properties. The results demonstrated that adding AgNP affects gelation temperature, gelation time, and hydrogel modulus. The structural morphology (size and porosity) of hydrogel after the gelation process was changed with loading synthesized AgNP. Furthermore, the AgNP-filled hydrogels exhibited more excellent antibacterial performance than the unfilled hydrogel.

Article Details

How to Cite
Somjitkul, C., Hitakomate, E., Pechyen, C., & Wongwitthakakool, P. (2024). Development of thermosensitive chitosan/collagen hydrogel with antibacterial properties using biosynthesized silver nanoparticles from aqueous extract of fingerroot for bone grafting. Journal of Science and Technology Buriram Rajabhat University (Online), 8(2), 21–40. retrieved from https://ph02.tci-thaijo.org/index.php/scibru/article/view/254203
Section
Research Articles

References

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci, 22(13). doi:10.3390/ijms22137202

Chen, M., Pan, X., Wu, H., Han, K., Xie, X., Wedge, D., . . . Wu, C. (2011). Preparation and anti-bacterial properties of a temperature-sensitive gel containing silver nanoparticles. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 66(4), 272-277.

Chen, M., Yang, Z., Wu, H., Pan, X., Xie, X., & Wu, C. (2011). Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine, 6, 2873-2877. doi:10.2147/ijn.S23945

Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., Hoemann, C., . . . Selmani, A. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21(21), 2155-2161.

Couto, D. S., Hong, Z., & Mano, J. F. (2009). Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomaterialia, 5(1), 115-123.

Dang, Q., Liu, K., Zhang, Z., Liu, C., Liu, X., Xin, Y., . . . Fan, B. (2017). Fabrication and evaluation of thermosensitive chitosan/collagen/α, β-glycerophosphate hydrogels for tissue regeneration. Carbohydr Polym, 167, 145-157. doi:10.1016/j.carbpol.2017.03.053

Ding, K., Yang, Z., Zhang, Y. L., & Xu, J. Z. (2013). Injectable thermosensitive chitosan/β-glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell Biol Int, 37(9), 977-987. doi:10.1002/cbin.10123

Govindaraju, K., Selvaraj, T., Kiruthiga, V., & Singaravelu, G. (2010). Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3, 394-399.

Hong, K. H. (2007). Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings. Polymer Engineering & Science, 47(1), 43-49.

Huang, H., Yuan, Q., & Yang, X. (2004). Preparation and characterization of metal–chitosan nanocomposites. Colloids and surfaces B: Biointerfaces, 39(1-2), 31-37.

Kaur, K., Sa'Paiva, S., Caffrey, D., Cavanagh, B. L., & Murphy, C. M. (2021). Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. Materials Science and Engineering: C, 128, 112340.

Lavertu, M., Filion, D., & Buschmann, M. D. (2008). Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation. Biomacromolecules, 9(2), 640-650.

Li, X., Xu, H., Chen, Z.-S., & Chen, G. (2011). Biosynthesis of Nanoparticles by Microorganisms and Their Applications. Journal of Nanomaterials, 2011, 1-16. doi:10.1155/2011/270974

Miguel, S. P., Ribeiro, M. P., Brancal, H., Coutinho, P., & Correia, I. J. (2014). Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym, 111, 366-373. doi:10.1016/j.carbpol.2014.04.093

Moreira, C. D., Carvalho, S. M., Mansur, H. S., & Pereira, M. M. (2016). Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Materials Science and Engineering: C, 58, 1207-1216.

Murugadoss, A., & Chattopadhyay, A. (2007). A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology, 19(1), 015603.

Ni, P., Ding, Q., Fan, M., Liao, J., Qian, Z., Luo, J., . . . Wei, Y. (2014). Injectable thermosensitive PEG–PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials, 35(1), 236-248.

Ramteke, C., Chakrabarti, T., Sarangi, B. K., & Pandey, R.-A. (2013). Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. Journal of chemistry, 2013.

Roy, N., & Barik, A. (2010). Green synthesis of silver nanoparticles from the unexploited weed resources. International Journal of Nanotechnology and applications, 4(2), 95-101.

Sámano-Valencia, C., Martínez-Castañón, G., Martínez-Gutiérrez, F., Ruiz, F., Toro-Vázquez, J., Morales-Rueda, J., . . . Martínez, N. N. (2014). Characterization and biocompatibility of chitosan gels with silver and gold nanoparticles. Journal of Nanomaterials, 2014, 142-142.

Siripanth, J., & Wongwitthayakool, P. (2018). Flexural Strength and Viscoelastic Properties of Acrylic Resin Denture Base Material Containing Silver Nanoparticle Synthesized from Fingerroot Aqueous Extract. Key Engineering Materials, 777, 178-182. doi:10.4028/www.scientific.net/KEM.777.178

Szymaǹska, E., Sosnowska, K., Miltyk, W., Rusak, M., Basa, A., & Winnicka, K. (2015). The Effect of β-Glycerophosphate Crosslinking on Chitosan Cytotoxicity and Properties of Hydrogels for Vaginal Application. Polymers, 7(11), 2223-2244. Retrieved from https://www.mdpi.com/2073-4360/7/11/1510

Wongwitthayakool, P., & Pudla, M. (2018). Thermal Properties of Acrylic Resin Denture Base Material Containing Silver Nanoparticle Synthesized from Aqueous Extract of Boesenbergia rotunda. Key Engineering Materials, 777, 173-177. doi:10.4028/www.scientific.net/KEM.777.173

Xie, Y., Liao, X., Zhang, J., Yang, F., & Fan, Z. (2018). Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. International Journal of Biological Macromolecules, 119, 402-412.

Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine, 15, 2555-2562. doi:10.2147/ijn.S246764

You, C., Li, Q., Wang, X., Wu, P., Ho, J., Jin, R., . . . Han, C. (2017). Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Scientific reports, 7. doi:10.1038/s41598-017-10481-0