Fibroin and sericin-derived bioactive peptides and hydrolysates as alternative sources of food additive for promotion of human health: A review

Main Article Content

Motoyuki Sumida
Vallaya Sutthikhum


Clothing, food and housing are the fundamental three items for human beings to live humanly. Sericulture has contributed to clothing and housing for more than four thousand years via the production of clothes and goods for houses, such as curtains and bed covers, but has contributed rather little to food, except entomophagy or eating larvae or pupae inside cocoons. When we consider ingestion of silk proteins, fi broin and sericin, from cocoons in the form of bioactive peptides and hydrolysates as in bioactive peptides and hydrolysates from food proteins, such as soy, fi sh, meat, milk, egg, wheat, broccoli and rice, which are known to be benefi cial for the promotion of human health, modern sericulture should contribute to food, and therefore contribute to clothing, food and housing equally. For the preparation of bioactive peptides and hydrolysates from fi broin and sericin, enzymatic hydrolysis is a powerful tool. Based on our experience of the study of silk digestion enzyme for more than twenty years, in this review we summarize current knowledge of bioactive peptides and hydrolysates prepared from fi broin and sericin from domesticated silkworm, Bombyx mori, as well as from wild silkmoths, by proteases and their potency for the promotion of human health. Although the number of bioactive peptides and hydrolysates from fi broin and sericin is currently limited, we believe more products will be added in the future from fi broin and sericin and the contribution of modern sericulture to the promotion of human health from this aspect is likely to be assured. We encourage researchers related to silk proteins, fi broin and sericin, to perform further comprehensive studies on bioactive peptides and hydrolysates from fi broin and sericin from domesticated silkworm and wild silkmoths, both of which should provide fruitful resources for the welfare of human beings.

Article Details



Agyei, D. and Danquah, M. K. 2011. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29, 272-277.

Agyei, D. and Danquah, M. K. 2012. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology 23, 62-69.

Ahmad, R., Kamra, A. and Hasnain, S. E. 2004. Fibroin silk proteins from the nonmulberry silkworm Philosamia ricini are biochemically and immunochemically distinct from those of the mulberry silkworm Bombyx mori. DNA and Cell Biology 23, 149-154.

Akai, H. 1965. Studies on the ultrastructure of the silk gland in the silkworm, Bombyx mori L. VI. Bulletine of Sericultural Experiment Station 19, 375-484 (In Japanese).

Chaitanya, R. K. and Dutta-Gupta, A. 2010. Light chain fibroin and P25 genes of Corcyra cephalonica: Molecular cloning, characterization, tissue-specifi c expression, synchronous developmental and 20- hydroxyecdysone regulation during the last instar larval development. General and Comparative Endocrinology 167, 113-121.

Chen, K., Iura, K., Aizawa, R. and Hirabayashi, K. 1991. The digestion of silk fibroin by rat. Journal of Sericultural Science of Japan 60, 402-403 (In Japanese).

Chen, K., Iura, K., Takano, R. and Hirabayashi, K. 1993. Effect of fi broin administration on the blood cholesterol level of rats loaded with cholesterol. Journal of Sericultural Science of Japan 62, 56-60 (In Japanese with English summary).

Chevillard, M., Deleage, G. and Couble, P. 1986. Amino acid sequence and putative conformational characteristics of the 25 kD silk protein of Bombyx mori. Sericologia 26, 435-449.

Collin, M. A., Mita, K., Sehnal, F. and Hayashi, C. Y. 2010. Molecular evolution of Lepidopteran silk proteins: Insights from the ghost moth, Hepialus californicus. Journal of Molecular Evolution 70, 519-529.

Craig, C. L. and Riekel, C. 2002. Comparative architecture of silks, fi brous proteins and their encoding genes in insects and spiders. Comparative Biochemistry and Physiology B 133, 493-507.

Dash, R., Ghosh, S. K., Kaplan, D. L. and Kundu, S. C. 2007. Purifi cation and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comparative Biochemistry and Physiology B 147, 129-134.

Dash, R., Mukherjee, S. and Kundu, S. C. 2006. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. International Journal of Biological Macromolecules 38, 255-258.

Datta, A., Ghosh, A. K. and Kundu, S. C. 2001. Purifi cation and characterization of fi broin from the tropical Saturniid silkworm, Antheraea mylitta. Insect Biochemistry and Molecular Biology 31, 1013-1018.

de Castro, R. J. S. and Sato, H. H. 2015. Biologically active peptides: Processes for their generation, purifi cation and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74, 185-198.

Erdmann, K., Cheung, B. W. Y. and Schroder, H. 2008. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry 19, 643-654.

Fedic, R., Zurovec, M. and Sehnal, F. 2002. The silk of Lepidoptera. Journal of Insect Biotechnology and Sericology 71, 1-15.

Fedic, R., Zurovec, M. and Sehnal, F. 2003. Correlation between fi broin amino acid sequence and physical silk properties. The Journal of Biological Chemistry 37, 35255-35264.

FitzGerald, R. and Murray, B. 2006. Bioactive peptides and lactic fermentations. International Journal of Dairy Technology 59, 118-125.

Gheysens, T., Collins, A., Raina, S., Vollrath, F. and Knight, D. P. 2011. Demineralization enables reeling of Wild silkmoth cocoons. Biomacromolecules 12, 2257- 2266.

Good, I. L, Kenoyer, J. M. and Meadow, R. H. 2009. New evidence for early silk in the Indus civilization. Archaeometry 50, 1-10.

Hartmann, R. and Meisel, H. 2007. Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology 18, 163-169.

Hernandez-Ledesma, B., Recio, I. and Amigo, L. 2008. β-Lactoglobulin as source of bioactive peptides. Amino Acids 35, 257-265.

Hirabayashi, K, Watanabe, M. and Suzuki, M. 1989. Gelation of silk fi broin and its application to human food preparation. SEN-I GAKKAISI 6, 263-267 (In Japanese).

Hirao, K. and Igarashi, K. 2013. Teaching material study. Characteristics of silk fi broin preparations and its utilization for human food preparation. Journal of Cookery Science of Japan 46, 54-58 (In Japanese).

Hong, F., Ming, L., Yi, S., Zhanxia, L., Yongquan, W. and Chi, L. 2008. The antihypertensive effect of peptides: A novel alternative to drugs? Peptides 29, 1062-1071.

Hyun, C.-K., Kim, I.-Y. and Frost, S. C. 2004. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. The Journal of Nutrition 134, 3257-3263.

Igarashi, K., Yoshioka, K., Mizutani, K., Miyakoshi, M., Murakami, T. and Akizawa, T. 2006. Blood pressure-depressing activity of a peptide derived from silkworm fi broin in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry 70, 517-520.

Inoue, S., Tanaka, K. Arisaka, F., Kimura, S., Ohtomo, K. and Mizuno, S. 2000. Silk fi broin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. The Journal of Biological Chemistry 275, 40517-40528.

Jung, S.-R., Song, N.-J., Hwang, H.S., An, J. J., Cho, Y.-J., Kweon, H. Y., Kang, S.-W., Lee, K. G., Yoon, K., Kim, B.-J, Nho, C. W., Choi, S. Y. and Park, K. W. 2011. Silk peptides inhibit adipocyte differentiation through modulation of the Notch pathway in C3H10T1/2 cells. Nutrition Research 31, 723-730.

Jung, S. R., Song, N.-J., Yang, D. K., Cho, Y.-J., Kim, B.-J., Hong, J.-W., Yun, U. J., Jo, D.-G., Lee, Y. M., Choi, S. Y. and Park, K. W. 2013. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutrition Research 33, 162-170.

Kasoju, N., Bhonde, R. R. and Bora, U. 2009. Preparation and characterization of Antheraea assama silk fi broin based novel non-woven scaffold for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine 3, 539-552.

Kim, S.-K. and Wijesekara, I. 2010. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods 2, 1-9.

Kimura, K., Oyama, F., Ueda, H., Mizuno, S. and Shimura, K. 1985. Molecular cloning of the fi broin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia 41, 1167- 1171.

Kludkiewicz, B., Takasu, Y., Fedic, R., Tamura, T., Sehnal, F. and Zurovec, M. 2009. Structure and expression of the silk adhesive protein Ser2 in Bombyx mori. Insect Biochemistry and Molecular Biology 39, 938- 946.

Korhonen, H. 2009. Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods 1, 177-187.

Korhonen, H. and Pihlanto, A. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16, 945-960.

Kundu, S. C., Dash, B. C., Dash, R. and Kaplan, D. L. 2008. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science 33, 998-1012.

Kundu, S. C., Kundu, B., Talkdar, S., Bano, S., Nayak, S., Kundu, J., Mandal, B. B., Bhardwaj, N., Botlagunta, M., Dash, B. C., Acharya, C. and Ghosh, A. K. 2011.

Nonmulberry silk biopolymers. Biopolymers 97, 455-467. Law, J. H. 2015. Breaking good: A chemist wanders into entomology. Annual Review of Entomology 60, 1-15.

Li, G.-H., Le, G.-W., Shi, Y.-H. and Shrestha, S. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharamacological effects. Nutrition Research 24, 469-486.

Lokeshwari, R. K. and Shantibala, T. 2010. A review on the fascinating world of insect resources: Reason for thoughts. Psyche 1-11.

Lu, A., Arai, M. and Hirabayashi, K. 1996. Production of tussah silk powder by hydrochloric acid hydrolysis. Journal of Sericultural Science of Japan 65, 392-394 (In Japanese).

Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E. and Malcata, F. X. 2010. Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science 93, 437-455.

Maity, S., Goel, S. I., Roy, S., Ghorai, S., Bhattacharyya, S., Venugopalan, A. and Ghosh, A. K. 2010. Analysis of transcripts expressed in one-day-old larvae and fi fth instar silk glands of tasar silkworm, Antheraea mylitta. Comparative and Functional Genomics 2010, 1-11.

Mandal, B. B. and Kundu, S. C. 2008. A novel method for dissolution and stabilization of non-mulberry silk gland protein fi broin using anionic surfactant sodium dodecyl sulfate. Biotechnology and Bioengineering 99, 1482-1489.

Martinez, L., Almagro, J. C., Coll, J. L. and Herrera, R. J. 2004. Sequence variability in the fi broin-H intron of domesticated and wild silk moths. Insect Biochemistry and Molecular Biology 34, 343-352.

Mhuka, V., Dube, S. and Nindi, M. M. 2013. Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial. International Journal of Biological Macromolecules 52, 305-311.

Michaille, J. J., Garel, A. and Prudhomme, J. C. 1990. Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86, 177-184.

Mondal, M., Trivedy K. and Kumar, S. N. 2007. The silk proteins, sericin and fi broin in silkworm, Bombyx mori Linn., - a review. Caspian Journal of Environmental Science 5, 63-76.

Ni, L., Tao, G. J., Wang, Z. and Xu, S. Y. 2001. Separation, purifi cation and identifi cation of angiotensin converting enzyme inhibitory silk fi broin peptide. Chinese Journal of Chromatography 19, 222-225 (In Chinese with English abstract).

Nirmala, X., MIta, K., Vanisree, V., Zurovec, M. and Sehnal, F. 2001. Identifi cation of four small molecular mass proteins in the silk of Bombyx mori. Insect Molecular Biology 10, 437-445.

Okamoto, H., Ishikawa, E. and Suzuki, Y. 1982. Structural analysis of sericin genes. The Journal of Biological Chemistry 257, 15192-15199.

Park, K.-J., Jin H.-H. and Hyun, C.-K. 2002. Antigenotoxicity of peptides produced from silk fi broin. Process Biochemistry 38, 411-418.

Phelan, M., Aherne, A., FitzGerald, R. J., and O’Brien, N. M. 2009. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal 19, 643-654.

Power, O., Jakeman, P. and FitzGerald R. J. 2013. Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44, 797-820.

Prasad, B. C., Pandey, J. P. and Sinha, A. K. 2012. Studies on Antheraea mylitta cocoonase and its use in cocoons cooking. American Journal of Food Technology 7, 320-325.

Raikos, V. and Dassios, T. 2014. Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Science & Technology 94, 91-101.

Rajasekhar, A., Ravi, V., Reddy, M. N. and Rao, K. R. S. S. 2011. Thermostable bacterial protease – a new way for quality silk production. International Journal of Bio-Science and Bio-Technology 3, 43-57.

Ryan, J. T., Ross, R. P., Bolton, D., Fitzgerald, G. F. and Stanton, C. 2011. Bioactive peptides from muscle sources: Meat and fi sh. Nutrients 3, 765-791.

Sehnal, F. and Sutherland, T. 2008. Silks produced by insect labial glands. Prion 2, 145-153.

Sehnal, F. and Zurovec, M. 2004. Construction of silk fi ber core in Lepidoptera. Biomacromolecules 5, 666-674.

Sezutsu, H. and Yukuhiro, K. 2000. Dynamic rearrangement within the Antheraea pernyi silk fi broin gene is associated with four types of repetitive units. Journal of Molecular Evolution 51, 329-338.

Sezutsu, H. and Yukuhiro, K. 2014. The complete nucleotide sequence of the eri-silkworm (Samia cynthia ricini) fibroin gene. Journal of Insect Biotechnology and Sericology 83, 59-70.

Sezutsu, H., Kajiwara, H., Kojima, K., Mita, K., Tamura, T., Tamada, Y. and Kameda, T. 2007. Identifi cation of four major hornet silk genes with a complex of alanine-rich and serine-rich sequences in Vespa simillima xanthoptera Cameron. Bioscience, Biotechnology, and Biochemistry 71, 2725-2734.

Sezutsu, H., Tamura, T. and Yukuhiro, K. 2008. Leucine-rich fibroin gene of the Japanese wild silkmoth, Rhodinia fugax (Lepidoptera: Saturniidae). European Journal of Entomology 105, 561-566.

Sezutsu, H., Uchino, K., Kobayashi, I., Tatematsu, K.-I., Iizuka, T., Yonemura, N. and Tamura, T. 2009. Conservation of fibroin gene promoter function between the domesticated silkworm Bombyx mori and the wild silkmoth Antheraea yamamai. Journal of Insect Biotechnology and Sericology 78, 1-10.

Silva, S. V. and Malcata, F. X. 2005. Caseins as source of bioactive peptides. International Dairy Journal 15, 1-15.

Silva, V. R., Ribani, M., Gimenes, M. L. and Scheer, A. P. 2012. High molecular weight sericin obtained by high temperature and ultrafi ltration process. Procedia Engineering 42, 833-841.

Stewart, R. J. and Wang, C. S. 2010. Adaptation of caddisfl y larval silks to aquatic habitats by phosphorylation of H-fi broin serines. Biomacromolecules 11, 969-974.

Sumida, M. 2010. Fibroinase revisited–How fi broinase was isolated, how its function was revealed, what fi broinase study implicates–. International Journal of Wild Silkmoth & Silk 14, 61-76.

Sumida, M., Takimoto, S. and Matsubara, F. 1993b. Fibroinase from silk gland in the fourth molt stage in the silkworm, Bombyx mori. Comparative Biochemistry and Physiology 105B, 247-251.

Sumida, M., Takimoto, S., Ukai, M. and Matsubara, F. 1993a. Occurrence of fi broinase in degenerating silk gland in the pharate adult of the silkworm, Bombyx mori. Comparative Biochemistry and Physiology 105B, 239-245.

Suriana, S., Solihin, D. D., Noor, R. R. and Thohari, A. M. 2011. Characterization of partial coding region fi broin gene on wild silkmoth Cricula trifenestrata Helfer (Lepidoptera: Saturniidae). Journal of Animal Science and Technology 34, 23-29.

Sutthikhum, V., Watanabe, M. and Sumida, M. 2004a. Fibroinase activity in Bombyx mori silk gland in the larval-pupal development and its partial purifi cation from spinning larva. Journal of Insect Biotechnology and Sericology 73, 71-79.

Sutthikhum, V., Watanabe, M. and Sumida, M. 2004b. Fibroinase, a cathepsin L-like cysteine proteinase from the silk gland of spinning Bombyx mori larva, a counterpart in the silk gland of wild silkmoths, Samia cythia ricini and Antheraea pernyi: Purifi cation and characterization. International Journal of Wild Silkmoth & Silk 9, 21-38.

Takahashi, M., Tsujimoto, K., Kato, Y., Yamada, H., Takagi, H. and Nakamori, S. 2005. A sericin-derived peptide protects Sf9 insect cells from death caused by acute serum deprivation. Biotechnology Letters 27, 893-897.

Takasu, Y., Yamada, H. and Tsubouchi, K. 2002. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Bioscience, Biotechnology, and Biochemistry 66, 2715-2718.

Takasu, Y, Yamada, H., Saito, H. and Tsubouchi, K. 2005. Characterization of Bombyx mori sericins by the partial amino acid sequences. Journal of Insect Biotechnology and Sericology 74, 103-109.

Takasu, Y., Yamada, H., Tamura, T., Sezutsu, H., Mita, K. and Tsubouchi, K. 2007. Identifi cation and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 37, 1234-1240.

Tanaka, K. and Mizuno, S. 2001. Homologues of fi broin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai. Insect Biochemistry and Molecular Biology 31, 665-677.

Tanaka, K., Mori, K. and Mizuno, S. 1993. Immunological identifi cation of the major disulfi de-linked light component of silk fi broin. Journal of Biochemistry 114, 1-4. Udenigwe, C. C. and Aluko, R. E. 2012. Food protein-derived bioactive peptides: Production, processing, and potential health benefi ts. Journal of Food Science 71, R11-R24.

Vepari, C. and Kaplan, D. L. 2007. Silk as a biomaterial. Progress in Polymer Science 32, 991-1007.

Wang, W. and de Mejia, E. G. 2006. A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Comprehensive Reviews in Food Science and Food Safety 4, 63-78.

Wang, Y., Sanai, K., Wen, H., Zhao, T. and Nakagaki, M. 2010. Characterization of unique heavy chain fi broin fi laments spun underwater by the caddisfl y Stenopsyche marmorata (Trichoptera; Stenopsychidae). Molecular Biology Report 37, 2885-2892.

Watanabe, M. and Sumida, M. 2006. Enzymatic properties of purifi ed fi brionase of Eri-silkworm, Samia cynthia ricini at end of spinning. International Journal of Wild Silkmoth & Silk 11, 60-72.

Watanabe, M., Fujii, S. and Sumida, M. 2006c. Fibroinase of silk gland of Eri-silkworm, Samia cynthia ricini. Enzymatic properties at the fourth molt period, stage D2, and changes in activity during the fi fth instar. International Journal of Wild Silkmoth & Silk 11, 31-51.

Watanabe, M., Kamei, K. and Sumida, M. 2006b. Fibroinase activity of silk gland in larval and early pupal development of the silkworm, Bombyx mori assayed with a fluorescent quenched peptide substrate. Journal of Insect Biotechnology and Sericology 75, 115-126.

Watanabe, M., Kamei, K. and Sumida, M. 2007. Sericin digestion by fi broinase, a cathepsin L-like cysteine proteinase, of Bombyx mori silk gland. Journal of Insect Biotechnology and Sericology 76, 9-15.

Watanabe, M., Kotera, T. and Sumida, M. 2006a. Enzymatic properties of fi broinase of silk gland from day one pupa of the silkworm, Bombyx mori. Journal of Insect Biotechnology and Sericology 75, 39-46.

Watanabe, M., Sutthikhum, V., Kotera, T., Okumura, M., Nagaoka, S., Kamei, K., Mori, H. and Sumida, M. 2006d. Bombyx cysteine proteinase of silk gland (BCPSG): Cloning of cDNA and characterization of recombinant enzyme expressed in E. coli. International Journal of Wild Silkmoth & Silk 11, 73-90.

Watanabe, M., Yura, A., Yamanaka, M., Kamei, K., Hara, S. and Sumida, M. 2004. Purifi cation and characterization of fi broinase, a cathepsin L-like cysteine proteinase, from the silk gland in the fourth instar Bombyx mori larva at the fourth molt period, stage D2. Journal of Insect Biotechnology and Sericology 73, 61-70.

Wu, J.-H., Wang Z. and Xu, S.-Y. 2008. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochemistry 43, 480-487.

Yamada, H., Kato, Y. and Tsubouchi, K. 2001. Yellow pigmentation of the fi broin core in the cocoon fi bers of Cricula trifenestrata. International Journal of Wildsilkmoth & Silk 6, 43-46.

Yamada, H., Nakao, H., Takasu, Y. and Tsubouchi, K. 2001. Preparation of undegraded native molecular fi broin solution from silkworm cocoons. Materials Science and Engineering C 14, 41-46.

Yamaguchi, K., Kikuchi, Y., Takagi, T., Kikuchi, A., Oyama, F. and Shimura, K. 1989. Primary structure of the silk fi broin light chain determined by cDNA sequencing and peptide analysis. Journal of Molecular Biology 210, 127-139.

Yonemura, N. and Sehnal, F. 2006. The design of silk fi ber composition in moths has been conserved for more than 150 million years. Journal of Molecular Evolution 63, 42-53.

Yonemura, N., Sehnal, S., Mita, K. and Tamura, T. 2006. Protein composition of silk fi laments spun under water by caddisfl y larvae. Biomacromolecules 7, 3370-3378.

Zhou, C. Z., Confalonieri, F., Medina, N., Zivanovic, Y., Esnault, C., Yang, T, Jacquet, M., Janin, J., Duguet, M., Perasso, R., and Li, Z. G. 2000. Fine organization of Bombyx mori fi broin heavy chain gene. Nucleic Acids Research 28, 2413-2419.

Zhou, F. Z., Xue, Z. and Wang, J. 2010. Antihypertensive effects of silk fi broin hydrolysate by alcalase and purifi cation of an ACE inhibitory dipeptide. Journal of Agricultural and Food Chemistry 58, 6735-6740.

Zurovec, M. and Sehnal, F. 2002. Unique molecular architecture of silk fi broin in the waxmoth, Gelleria mellonella. The Journal of Biological Chemistry 277, 22639-22647.

Zurovec, M., Kodrik, D., Yang, C., Sehnal, F. and Scheller, K. 1998. The P25 component of Galleria silk. Molecular and General Genetics 257, 264-270.

Zurovec, M., Vaskova, M., Kodrik, D., Sehnal, F. and Kumaran, A. K. 1995. Light-chain fibroin of Galleria mellonella L. Molecular and General Genetics 247, 1-6.