X-ray phase technology shed new light on Weberian apparatus evolution: context and aim of the case study of †Chanoides (Otophysi, incertae sedis)

Main Article Content

Tristan Martial
Mayrinck Diogo
Boistel Renaud
Otero Olga


Otophysan fish are identified as a natural group and have been studied as such since the first half of the 19th century. This very speciose group largely dominates the vertebrate diversity of inland waters today. In the 1980’s passionate debates concerned the otophysan radiation and notably their primary habitat: are they primitively freshwaters or marine animals? To answer we need to better understand the phylogenetic relationships including those of the fossils and thus we need to enhance our knowledge on key bony structures such as the Weberian Apparatus. In this context we propose a CT scan approach, for a specimen of †Chanoides macropoma. In the last years, palaeontology benefited from the developments of phase contrast X-ray microtomography. We expect great advances to investigate the Weberian apparatus and its evolution in Otophysan fishes.

Article Details



Bird, N. C. and Mabee, P. M. 2003. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Developmental Dynamics 228, 337–357.

Boistel, R., Swoger, J., Kržič, U., Fernandez, V., Gillet, B. and Reynaud, E. G. 2011. The future of three dimentional microscopic imaging in marine biology. Marine Ecology 32(4), 438-452.

Briggs, J. C. 2005. The biogeography of otophysan fishes (Ostariophysi, Otophysi): a new appraisal. Journal of Biogeography 35, 287–294.

Britz, R. and Hoffman, M. 2006. Ontogeny and homology of the claustra in otophysan Ostariophysi (Teleostei). Journal of Morphology 267, 909–923.

Britz, R. and Moritz, T. 2007. Reinvestigation of the osteology of the miniature African freshwater fishes Cromeria and Grasseichthys (Teleostei, Gonorynchiformes, Kneriidae), with comments on Kneriidae relationships. Mitteilungen aus dem Museum für Naturkunde in Berlin, Zoologische Reihe 83 (1), 3–42.

Broughton, R. E., Betancur-R., R., Li, C., Arratia, G. and Ortí, G. 2013. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS Currents Tree of Life. Edition 1. doi:10.1371/ currents.tol.2ca8041495ffafd0c92756e75247483e.

Calcagnotto, D., Schaefer, S. A. and DeSalle, R. 2005. Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 36, 135–153

Chen, W-J., Lavoué, S. and Mayden, R., 2013. Evolutionary origin and early biogeography of otophysan fishes (Ostariophyi: Teleostei). Evolution 67-8, 2218–2239.

Coburn, M. M. and Futey, L. M. 1996. The ontogeny of supraneurals and neural arches in the cypriniforms Weberian Apparatus (Teleostei: Ostariophysi). Zoological Journal of the Linnean Society 116, 333–346.

Davesne, D., Gallut, C., Barriel, V., Lecointre, G., Janvier, P. and Otero, O. 2016. Building a consensus for deep intrarelationships of spiny-rayed teleosts (Acanthomorpha) with a dedicated sampling including fossil taxa. Frontiers in Ecology and Evolution 4, 129, pp. 20.

Dornburg, A., Townsend, J. P., Friedman, M. and Near, T. J. 2014. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evolutionary Biology 16, pp. 14.

Fink, S.V. and Fink, W. L. 1981. Interrelationships of the ostariophysan fishes (Teleostei). Zoological Journal of the Linnean Society 72 (4), 297–353.

Fink, S. V. and Fink, W. L. 1996. Interrelationships of Ostariophysan Fishes (Teleostei). In: Stiassny, M. Parenti, L. and Johnson D. (Eds.), Interrelationships of Fishes. Academic Press, San Diego, pp. 209–249.

Grande, T. and de Pinna, M. 2004. The evolution of the Weberian Apparatus: A phylogenetic perspective. In: Arratia, G. and Tintori, A. (Eds.), Mesozoic fishes 3: Systematics, Paleoenvironments, and Biodiversity. Verlag Dr. Friedrich Pfeil, München, pp. 429–448

Hoffmann, M. and Britz, R. 2006. Ontogeny and homology of the neural complex of otophysan Ostariophysi. Zoological Journal of the Linnean Society 175, 301–330.

Labiche, J. C., Mathon, O., Pascarelli, S., Newton, M.A., Ferre, G. G., Curfs, C, Vaughan, G., and Homs A. 2007. The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Review of Scientific Instruments 78(9), 091301–091311.

Mayrinck D., Brito, P. M. and Otero, O. 2015a. Anatomical review of †Salminops ibericus, a Teleostei incertaesedis from the Cenomanian of Portugal, anciently assigned to Characiformes and possibly related to crossognathiform fishes. Cretaceous Research 56, 66–75.

Mayrinck, D., Brito P. M. and Otero, O. 2015b. Review of the osteology of the fossil fish formerly attributed to the genus †Chanoides, systematic and implications for the definition of otophysan bony characters. Journal of Systematic Palaeontology 13(5), 397–420.

Mayrinck, de D., Brito, P. M., Meunier, F.J., Alvarado-Ortega, J. and Otero, O. In review. †Sorbinicharax verraesi: an unexpected case of a benthic fish outside Acanthomorpha in the Upper Cretaceous of the Tethysian Sea.

Mirone, A., Brun, E., Gouillard, E., Tafforeau, P. and Kieffer, J. 2014. Pyhst2: a hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nuclear Instruments and Methods and Physics Research Section B: Beam interactions with Material and Atoms 324, 41–48.

Near, T. J., Dornburg, A., Eytan, R. I., Keck, B. P., Smith, W. L., Kuhn, K. L., Moore, J. A., Price, S. A., Burbrink, F. T., Friedman, M., and Wainwright, P. C. 2012. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Sciences 110, 12738– 12743.

Otero, O., Valentin, X. and Garcia, G. 2008. Cretaceous characiform fishes (Teleostei: Ostariophysi) from Northern Tethys: description of new material from the Maastrichtian of Provence (Southern France) and palaeobiogeographical implications. In: L. Cavin, A. Longbottom and M. Richter (Eds.), Fishes and the Break-up of Pangea. Geological Society, Special Publications, London, pp. 155–164.

Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. and Wilkins, S. W. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of microscopy 206(1), 33–40.

Patterson, C. 1984. Chanoides, a marine Eocene otophysan fish (Teleostei: Ostariophysi). Journal of Vertebrate Palaeontology 4 (3), 430–456.

Peng, Z., He, S., Wang, J., Wang, W. and Diogo, R. 2006. Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): A new insight. Gene 360, 113–124.

Rosen, D. E. and Greenwood, P. H. 1970. Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform fishes. American Museum Novitates 2428, 1–25.

Sagemehl, M. 1885. Beiträge zur vergleichenden Anatomie der Fische. III. Das Cranium der Characinidien nebst allgemeinen Bemerkungen über die mit einem Weber’schen Apparat versehenen Physostomenfamilien. Morphologisches Jahrebücher 10, 1–119

Saitoh, K., Sado, T., Doosey, M. H., Bart. Jr., H. L., Inoue, J. G., Nishida, M., Mayden, R. L. and Miya, M. 2011. Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of divergence of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zoological Journal of Linnean Society 161, 633–662.

Sullivan, J. P., Lundberg, J. G. and Hardman, M. 2006. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Molecular Phylogenetics and Evolution 41, 636–662.

Sutton, M. D. 2008. Tomographic techniques for the study of exceptionally preserved fossils. Proceedings of the Royal Society B 275, 1587–1593.

Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y. and Kay, R. F. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics 83(2), 195–202.

Toombs, H. and Rixon, A. 1959. The use of acids in the preparation of vertebrate fossils, Department of Paleontology, British Museum.

Weber E. H. 1820. De Aura et Auditu Hominis et Animalium: pars 1 – De Aura Animalium aquatilium. Leipzig, Fleischer G.

Zanette, I., Daghfous, G., Weitkamp, T., Gillet, B., Adriaens, D., Langer, M., and Baumbach, T. 2013. Looking inside marine organisms with magnetic resonance and X-ray imaging, Imaging marine life 122-184.