การเปรียบเทียบประสิทธิภาพการแยกตัวประกอบของชุดข้อมูลที่มีเลขประจำหลักเดียวกัน ตั้งแต่ 2 – 20 หลักด้วย Pollard’s rho Algorithm และ Fermat’s Factorization Method COMPARING THE PERFORMANCE FACTORIZATION OF A DATA SET WITH THE SAME NUMBER FROM 2-20, WITH THE POLLARD’S RHO ALGORITHM AND FERMAT’S FACTORIZATION METHOD
Keywords:
การแยกตัวประกอบ, อัลกอริทึมพอลลาร์ด โร, อัลกอริทึมทฤษฏีแฟร์มาต์Abstract
This research showed the factorization to compare the results of the algorithm used to factorization. Experimental research using Pollard's rho algorithm and Fermat's factorization method, both algorithms are currently popular algorithms. Comparing the efficiency of factorization of common numbers, the two algorithms are not very different in their efficiency. Therefore, the two factorial algorithms are used, using 171 numerical data sets, consisting of 2 - 20 digits, with the same numerals from 1 to 9, and comparing the two algorithms. Comparing these two algorithms gives the results of the time and efficiency of the factorization from each set. The results show that the Pollard's rho algorithm is more efficient and faster than the Fermat's factorization method.
Downloads
References
[2] Stallings, W. (2006). Cryptography and network security: principles and practices. Pearson Education India.
[3] Rivest, R. L., Shamir, A.; & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM. 21(2): 120-126.
[4] Woodward, Alan. (2012). An emerging threat to public-key encryption. Retrieved June, 2017, from https://www.profwoodward.org/2012/01/emerging-threat-to-public-key.html
[5] DI Management Services Pty Limited. (2017). RSA Algorithm. Retrieved March 20, 2017, from http://www.di-gt.com.au/rsa_alg.html
[6] Janeba, M. (1994). Factoring Challenge Conquered - With a Little Help from Willamette. Retrieved January 15, 2011, from http://www.willamette.edu/~mjaneba/rsa129.html
[7] Duta, C. L., Gheorghe, L.; & Tapus, N. (2016). Framework for evaluation and comparison of integer factorization algorithms. In SAI Computing Conference (SAI), 2016. pp. 1047-1053.
[8] Ambedkar, B. R.; & Bedi, S. S. (2011). A new factorization method to factorize rsa public key encryption. IJCSI International Journal of Computer Science Issues. 8(6).
[9] Phillips, C. L.; & Nagle, H. T. (2007). Digital control system analysis and design. Prentice Hall Press.
[10] Pollard, J. M. (1978). Monte Carlo methods for index computation (????). Mathematics of computation. 32(143): 918-924.
[11] Teske, E. (2001). On random walks for Pollard’s rho method. Mathematics of computation. 70(234): 809-825.
[12] Lenstra, A. K., Lenstra, H. W., Manasse, M. S.; & Pollard, J. M. (1993). The factorization of the ninth Fermat number. Mathematics of Computation. 61(203): 319-349.
[13] Brent, R. (1999). Factorization of the tenth Fermat number. Mathematics of Computation of the American Mathematical Society. 68(225): 429-451.
[14] Bach, E. (1991). Toward a theory of Pollard's rho method. Information and Computation. 90(2): 139-
Downloads
Published
How to Cite
Issue
Section
License
Srinakharinwirot University Journal of Sciences and Technology is licensed Under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC-BY-NC-ND 4.0) License, Unless Otherwise Stated. Please Read Journal Policies Page for More Information on Open Access, Copyright and Permissions.