การศึกษาคุณสมบัติเทอร์โมอิเล็กตริกของทรานซิสเตอร์อิเล็กตรอนเดี่ยวชนิดโลหะด้วยวิธีควอนตัมมอนติคาร์โล THE STUDY OF THERMOELECTRIC PROPERTIES OF THE METALLIC SINGLE ELECTRON TRANSISTOR USING QUANTUM MONTE CARLO METHOD

Authors

  • ประธาน ศรีวิไล หน่วยวิจัยฟิสิกส์ทฤษฎีสสารควบแน่น ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม
  • เฉลิมวงศ์ ดอกประทุม คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม

Keywords:

Thermopower, Tunneling Phenomena, Quantum Monte Carlo Method

Abstract

We calculated the thermopower of the single electron transistor for a region of strong tunneling using the quantum Monte Carlo method. Moreover, the quantum Monte Carlo results were compared with results obtained from 2nd order perturbation theory. In the case of the strength tunneling parameter being , the Monte Carlo results agreed with the perturbation results. However, for  the Monte Carlo results were significantly different from the perturbation results. Therefore, we proposed this method to describe the thermoelectric properties of the single electron transistor for all tunneling regimes.

Downloads

Download data is not yet available.

References

[1] Grabert, H.; and Devoret M. (1992). Single Charge Tunneling. New York: Plenum Press.
[2] Selberherr S. (2001). Computational Microelectronics. New York: Springer-Verlag Wien.
[3] Tero, T. (2013). The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures. United Kingdom: Oxford.
[4] Fulton, T. A.; and G. J. Dolan. (1987). Observation of Single-Electron Charging Effects in Small Tunnel Junctions. Phys. Rev. Lett. 59(1): 109-112.
[5] Kakade, S. (2012). Supersensitive Electrometer and Electrostatic Data Storage using Single Electron Transistor. International Journal of Electronics and CommunicationEngineering. 591-596.
[6] Likharev, K. (1999). Single-Electron Devices and Their Applications. Proceedings of the IEEE. 87(4): 606-632.
[7] Lafarge, P., Pothier, H., Williams, E., Esteve, D., Urbina, C.; and Devoret, M. (1991). Direct Observation of Macroscopic Charge Quantization. Zeitschrift fur Physik B Condensed Matter. 85(3): 327-332.
[8] Wallisser, C., Limbach, B., Stein, P.V, Schäfer, R., Theis, C., Göppert, G.; and Grabert, H. (2002). Conductance of the Single-Electron Transistor: a Comparison of Experimental Data with Monte Carlo Calculations. Physical Review B. 66(12): 1-8.
[9] Kubala, Björn.; and Jürgen König. (2006). Quantum-Fluctuation Effects on the Thermopower of a Single-Electron Transistor. Physical Review B. 19(73): 195316.
[10] Kubala, Björn, Jürgen König.; and Jukka Pekola. (2008). Violation of the Wiedemann-Franz Law in a Single-Electron Transistor. Physics. Review. Letters. 6(100): 066801.
[11] Matveev, K. A.; and A. V. Andreev. (2002). Thermopower of a Single-Electron Transistor in the Regime of Strong Inelastic Cotunneling. Physical Review B. 4(66): 045301.
[12] Hicks, L. D.; and M. S. Dresselhaus. (1993). Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Physical Review B. 19(47): 12727-12731.
[13] Ramos, E.; et al. (2014). The Thermoelectric Figure of Merit for the Single Electron Transistor. International Journal of Thermal Sciences. (86): 387-393.
[14] Xu, Wei-Ping; et al. (2016). Thermoelectric Effects in Triple Quantum Dots Coupled to a Normal and a Superconducting Leads. Physics Letters A. 8(380): 958-964.
[15] Dóra, Balázs. (2006). Wiedemann-Franz Law in the SU(N) Wolff Model. Physical Review B. 16(74).
[16] Vineis, Christopher J.; et al. (2010). Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Advanced Materials. 36(22): 3970-3980.
[17] Chi, Feng; et al. (2011). Thermoelectric Effect in a Serial Two-Quantum-Dot. Physics Letters A. 10(375): 1352-1356.
[18] Patton, Bruce R. (2001). Solid State Physics: Physics Today. 10(54): 70-72.
[19] Tauc J. (1954). Theory of Thermoelectric Power in Semiconductors. Physics. Review. 6(95): 1394-1394.
[20] Christoph Theis. (2004). Conductance of Single Electron Devices from Imaginary–Time Path Integrals. Dissertation, Ph.D. (Mathematics and Physics). Freiburg: Albert Ludwigs University Freiburg.
[21] Metropolis N.; and Ulam S. (1949). The Monte Carlo Method. Journal of the American Statistical Association. 44(247): 335-341.

Downloads

Published

2019-02-05

How to Cite

ศรีวิไล ป., & ดอกประทุม เ. (2019). การศึกษาคุณสมบัติเทอร์โมอิเล็กตริกของทรานซิสเตอร์อิเล็กตรอนเดี่ยวชนิดโลหะด้วยวิธีควอนตัมมอนติคาร์โล THE STUDY OF THERMOELECTRIC PROPERTIES OF THE METALLIC SINGLE ELECTRON TRANSISTOR USING QUANTUM MONTE CARLO METHOD. Srinakharinwirot University Journal of Sciences and Technology, 10(20, July-December), 46–56. retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/170328