Hydrochar production from pineapple peels for use as solid fuel using hydrothermal carbonization process
Keywords:
Fruit Peel, Municipal Waste, Hydrochar, Hydrothermal CarbonizationAbstract
Since the canning industry produces a large amount of fruit waste annually, it is important to investigate the potential of converting fruit waste into value-added products and reduce its harmful impact on the environment. This research studies the production of hydrochar from pineapple peels for use as a solid fuel through hydrothermal carbonization (HTC). The study also analyzes the physical and chemical properties of the hydrochar, including its mass yield, energy yield, ultimate analysis, calorific value, energy densification, functional groups, and thermal decomposition characteristic. The atomic ratio of hydrochar were compared with coals using the van Krevelen diagram. The results of the study found that pineapple peel contains 43.8% and 48.8% of carbon and oxygen, respectively. The decomposition of pineapple peel mass mainly occurs in the temperature range of 133.75–390 °C, with the highest rate of decomposition occurring at 3 peaks at temperatures were 198, 258, and 326 °C. During this time, the biomass samples lost 55.07% of their weight. In addition, a clear decrease in the peak intensity was observed at wave number 1237 cm-1 following the increase in reaction temperature. Pretreatment with hydrothermal carbonization caused severe decomposition of cellulose and hemicellulose, reducing the mass yield to 38.75%. Hydrochar derived from pineapple peel was thermally treated at 175 and 200 °C, resulting in properties that were comparable to peat.
Downloads
References
Office of Agricultural Economics. (2023). Agricultural production statistics. Retrieved April 6, 2024, from https://www.oae.go.th/view/1/ข้อมูลการผลิตสินค้าเกษตร/TH-TH
Mardawati, E., Rahmah, D. M., Rachmadona, N., Saharina, E., Pertiwi, T. Y. R., Zahrad, S. A., Ramdhani, W., Srikandace, Y., Ratnaningrum, D., Endah, E. S., Andriani, D., Khoo, K. S., Pasaribu, K. M., Satoto, R., and Karina, M. (2023). Pineapple core from the canning industrial waste for bacterial cellulose production by Komagataeibacter xylinus. Heliyon, 9(11), Article e22010. https://doi.org/10.1016/j.heliyon.2023.e22010
Shakya, A., and Agarwal, T. (2019). Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of Molecular Liquids, 293, Article 111497. https://doi.org/10.1016/j.molliq.2019.111497
Camargo, J. M. de O., Ríos, J. M. G., Antonio, G. C., Leite, J. T. C., Camargo, J. M. de O., Ríos, J. M. G., Antonio, G. C., and Leite, J. T. C. (2021). Physicochemical properties of sugarcane industry residues aiming at their use in energy processes. In Sugarcane—Biotechnology for Biofuels. IntechOpen.
Sharma, K., Sharma, M., Samridhi Kaul, K., Singh, G., and Arya, S. K. (2024). Commercial Waste to Energy, Technologies, Economics, and Challenges: Stores, Hotels, Restaurant. In M. R. Rahimpour (Ed.), Encyclopedia of Renewable Energy, Sustainability and the Environment (1st ed., pp. 29–40). Elsevier.
Fonseca, F. G., Funke, A., Niebel, A., Soares Dias, A. P., and Dahmen, N. (2019). Moisture content as a design and operational parameter for fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 139, 73–86. https://doi.org/10.1016/j.jaap.2019.01.012
Köchermann, J., Görsch, K., Wirth, B., Mühlenberg, J., and Klemm, M. (2018). Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. Journal of Environmental Chemical Engineering, 6(4), 5481–5487. https://doi.org/10.1016/j.jece.2018.07.053
Hamid, N. A. A., and Zulkifli, N. Z. (2021). Papaya peels as source of hydro char via hydrothermal carbonization. IOP Conference Series: Earth and Environmental Science, 765(1), Article 012001. https://doi.org/10.1088/1755-1315/765/1/012001
Lei, Q., Kannan, S., and Raghavan, V. (2021). Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste. Waste Management, 126, 106–118. https://doi.org/10.1016/j.wasman.2021.02.058
Picone, A., Volpe, M., Giustra, M. G., Di Bella, G., and Messineo, A. (2021). Hydrothermal carbonization of lemon peel waste: Preliminary results on the effects of temperature during process water recirculation. Applied System Innovation, 4(1), 1-12. https://doi.org/10.3390/asi4010019
Zhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M., and Dutta, A. (2018). Hydrothermal carbonization of fruit wastes: A promising technique for generating hydrochar. Energies, 11(8), 1-14. https://doi.org/10.3390/en11082022
ASTM International. (2021). Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke (ASTM D5373-16). ASTM International. https://doi.org/10.1520/D5373-16
Faleeva, Y. M., Lavrenov, V. A., and Zaichenko, V. M. (2024). Investigation of plant biomass two-stage pyrolysis based on three major components: Cellulose, hemicellulose, and lignin. Biomass Conversion and Biorefinery, 14(13), 14519–14529. https://doi.org/10.1007/s13399-022-03385-1
Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
Pereira, P. H. F., Arantes, V., Pereira, B., Ornaghi, H. L., de Oliveira, D. M., Santagneli, S. H., and Cioffi, M. O. H. (2022). Effect of the chemical treatment sequence on pineapple peel fiber: Chemical composition and thermal degradation behavior. Cellulose, 29(16), 8587–8598. https://doi.org/10.1007/s10570-022-04806-0
Patel, M., Oyedun, A. O., Kumar, A., and Gupta, R. (2019). Predicting the biomass conversion performance in a fluidized bed reactor using isoconversional model-free method. The Canadian Journal of Chemical Engineering, 97(S1), 1263–1273. https://doi.org/10.1002/cjce.23397
Zhang, Y., Wang, H., Sun, X., Wang, Y., and Liu, Z. (2021). Separation and characterization of biomass components (cellulose, hemicellulose, and lignin) from corn stalk. BioResources, 16(4), 7205–7219. https://doi.org/10.15376/biores.16.4.7205-7219
Pardo, M. E. S., Cassellis, M. E. R., Escobedo, R. M., and García, E. J. (2014). Chemical characterisation of the industrial residues of the pineapple (Ananas comosus). Journal of Agricultural Chemistry and Environment, 3(2), 53-56. https://doi.org/10.4236/jacen.2014.32B009
Ganguly, P., Sengupta, S., Das, P., and Bhowal, A. (2020). Synthesis of Cellulose from Peanut Shell Waste and Its Use in Bioethanol Production. In S. K. Ghosh, R. Sen, H. N. Chanakya, and A. Pariatamby (Eds.), Bioresource Utilization and Bioprocess (pp. 81–91). Springer.
Morales-Máximo, M., García, C. A., Pintor-Ibarra, L. F., Alvarado-Flores, J. J., Velázquez-Martí, B., and Rutiaga-Quiñones, J. G. (2021). Evaluation and characterization of timber residues of pinus spp. as an energy resource for the production of solid biofuels in an indigenous community in mexico. Forests, 12(8), Article 977. https://doi.org/10.3390/f12080977
Lourenço, S. C., Campos, D. A., Gómez-García, R., Pintado, M., Oliveira, M. C., Santos, D. I., Corrêa-Filho, L. C., Moldao-Martins, M., and Alves, V. D. (2021). Optimization of natural antioxidants extraction from pineapple peel and their stabilization by spray drying. Foods, 10(6), Article 1255. https://doi.org/10.3390/foods10061255
Azaare, L., Commeh, M. K., Smith, A. M., and Kemausuor, F. (2021). Co-hydrothermal carbonization of pineapple and watermelon peels: Effects of process parameters on hydrochar yield and energy content. Bioresource Technology Reports, 15, Article 100720. https://doi.org/10.1016/j.biteb.2021.100720
Fu, B., Ge, C., Yue, L., Luo, J., Feng, D., Deng, H., and Yu, H. (2016). Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. BioResources, 11(4), 9017–9035. https://doi.org/10.15376/biores.11.4.9017-9035
Kalinci, Y., Hepbasli, A., and Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817. https://doi.org/10.1016/j.ijhydene.2009.08.078
Moore, T. R., Large, D., Talbot, J., Wang, M., and Riley, J. L. (2018). The stoichiometry of carbon, hydrogen, and oxygen in peat. Journal of Geophysical Research: Biogeosciences, 123(10), 3101–3110. https://doi.org/10.1029/2018JG004574
Kanchanatip, E., Prasertsung, N., Thasnas, N., Grisdanurak, N., and Wantala, K. (2023). Valorization of cannabis waste via hydrothermal carbonization: Solid fuel production and characterization. Environmental Science and Pollution Research, 30(39), 90318–90327. https://doi.org/10.1007/s11356-022-24123-0
Chaiyaraksa, C., Ruenroeng, C., Buaphuan, B., and Choksakul, S. (2019). Adsorption of cationic and anionic dye using modified pineapple peel. Songklanakarin Journal of Science and Technology, 41, Article 199206. https://doi.org/10.14456/SJST-PSU.2019.24
Camacho, M., Regina, Y., Lopretti, M., Carballo, L., Moreno, G., Alfaro, B., and Roberto, J. (1970). Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. Journal of Renewable Materials, 5(5), 271–279. https://doi.org/10.7569/JRM.2017.634117
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Srinakharinwirot University Journal of Sciences and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Srinakharinwirot University Journal of Sciences and Technology is licensed Under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC-BY-NC-ND 4.0) License, Unless Otherwise Stated. Please Read Journal Policies Page for More Information on Open Access, Copyright and Permissions.