The Influence of the Quantity of Magnetic Materials Extracted from Electronic Waste on The Modulus and Electromagnetic Parameters of Polypropylene Composites

Authors

  • Anuchit Hunyek Program of General Education – Science (Physics), Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus.

Keywords:

iron oxide, polypropylene, electronic waste

Abstract

This research investigated the influence of the quantity of magnetic materials on modulus and electromagnetic parameters. We ground transformer cores into powder in a ball mill. We analyzed the obtained powder using the X-ray diffraction technique, which revealed it to be iron oxide powder. We mixed the iron oxide powder with polypropylene at weights of 0, 5, 10, 15, 20, and 25 phr using an internal mixer. Control temperature, screw speed, and mixing time. Next, we used the two-roll mill to roll the material into sheets and cut test samples for each technique. Scanning electron microscopy (SEM) pictures revealed the spread of iron oxide powder in the polypropylene matrix. As the amount of iron oxide increased, the clusters got bigger. Dynamic mechanical properties tests showed that the iron oxide powder mixing increased the modulus of polypropylene at any temperature. The electromagnetic parameters, namely magnetization, permeability, and permittivity, vary linearly with the iron oxide content.

Downloads

Download data is not yet available.

References

Singh, A. K., Bedi, R., and Kaith, B. S. (2020). Mechanical properties of composite materials based on waste plastic – A review. Materials Today: Proceedings, 26, 1293-1301. https://doi.org/10.1016/j.matpr.2020.02.258

Roa, C. F., Singh, N., Cherin, E., Yin, J., Boyes, A., Foster, F. S., and Demore, C. E. M. (2022). Pitch flexible printed circuit board patterning for miniaturized endoscopic microultrasound arrays. IEEE Trans Ultrason Ferroelectr Freq Control, 69, 2785-2797. https://doi.org/10.1109/TUFFC.2022.3189338

Sharifianjazi, F., Irani, M., Esmaeilkhanian, A., Bazli, L., Asl, M. S., Jang, H. W., Kim, H. Y. Ramakrishna, S., Shokouhimehr, M., and Varma, R. V. (2021). Polymer incorporated magnetic nanoparticles: applications for magnetoresponsive targeted drug delivery. Materials Science and Engineering: B, 272, Article 115358. https://doi.org/10.1016/j.mseb.2021.115358

Maksimkin, A. V., Dayyoub, T., Telyshev, D. V., and Gerasimenko, A. Y. (2022). Electroactive polymer-based composites for artificial muscle-like actuators: A review. Nanomaterials, 12, Article 2272. https://doi.org/10.3390/nano12132272

Yadav, R., Tirumali, M., Wang, X., Naebe, M., and Kandasubramanian, B. (2020). Polymer composite for antistatic application in aerospace. Defence Technology, 16, 107-118. https://doi.org/10.1016/j.dt.2019.04.008

Xie, C., Xiao, C., Jiang, X., Liang, S., Liu, C., Zhang, Z., Chen, Q., and Li, W. (2022). Miscibility-controlled mechanical and photovoltaic properties in double-cable conjugated polymer/insulating polymer composite. Macromolecules, 55, 322-330. https://doi.org/10.1021/acs.macromol.1c02111

Kodaira, H., and Oya, T. (2024). Development and evaluation of thread transistor based on carbon-nanotube composite thread with ionic gel and its application to logic gates. Journal of Composite Science, 8, Article 463. https://doi.org/10.3390/jcs8110463

Ismail, I., Matori, K. A., Abbas, Z., Zulkimi, M. M. M., Idris, F. M., Zaid, M. H. M., Rahim, N., Hasan, I. H., and Song, W. H. (2019). Single- and double-layer microwave absorber of cabalt ferrite and graphite composite at gigahertz frequency. Journal of Superconductivity and Novel Magnetism, 32, 935-943. https://doi.org/10.1007/s10948-018-4749-x

Caramitu, A. R., Lungu, M. V., Ciobanu, R. C., Ion, I., Marin, M., Marinescu, V., Pintea, J., Aradoaei, S.,

and Schreiner, O. D. (2024). Recycled polypropylene/strontium ferrite polymer composite materials with electromagnetic shielding properties. Polymers, 16, Article 1129. https://doi.org/10.3390/polym16081129

Hunyek, A. (2019). Mechanical, optical and electrical properties of copper oxide-polypropylene composite. The Journal of KMUTNB, 29, 527-538. https://ph01.tci-thaijo.org/index.php/kmutnb-journal/article/view/211103 (in Thai).

Trukhanov, A. V., Trukhanova, E. L., Zubar, T. I., Yao, Y., Podgornaya, S. V., Almessiere, M. A., Baykal, A., Slimani, Y., Rotkovich, A. A., Sayyed, M. I., Silibin, M. V., Trukhanov, S. V., and Tishkevich, D. I. (2024). Structure and magnetic properties of the spinel-polymer composites. Journal of Materials Research and Technology, 30, 7115-7124. https://doi.org/10.1016/j.jmrt.2024.05.079

Nowacki, B., Mistewicz, K., Starczewska, A., Jata, J., Kozito, M., Olesik, P., Smolen, J., Kowol, P., Pilsniak, A., and Burian, A. K. (2024). Tribological, magnetic and electric properties of magnetic polymer composites for airgap-less application, Tribology International, 194, Article 109542. https://doi.org/10.1016/j.triboint.2024.109542

Usakova, M., Usak, E., Durisova, E., Dosoudil, R., Dobrocka, E., and Soka, M. (2024). Polymer composites with magnetically active Eu-substituted NiZn ferrite fillers. Materials Today Chemistry, 38, Article 102056. https://doi.org/10.1016/j.mtchem.2024.102056

Plastics Europe. (2021). Plastic - the facts 2021 an analysis of european plastics production, demand and waste data. Plastics Europe. Retrieved December 13, 2024, from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/

Alawa, B., and Chakma, S. (2025). A review on feasibility and techno-economic analysis of hydrocarbon liquid fuels production via catalytic pyrolysis of waste plastic materials. Carbon Capture Science & Technology, 14, Article 100337. https://doi.org/10.1016/j.ccst.2024.100337

Hunyek, A., and Sirisathitkul, C. (2023). Effect of cobalt ferrite on curing and electromagnetic properties of natural rubber composites. Advances in Materials Research, 12, 1-13. https://doi.org/10.12989/amr.2023.12.1.001

Hu, D., Xing, Y., Chen, M., Gu, B., Sun, Q., and Li, Q. (2017). Ultastrong and excellent dynamic mechical properties of carbon nanotube composites. Composites Science and Technology, 141, 137-144. https://doi.org/10.1016/j.compscitech.2017.01.019

Jiles, D. C. (1996). Introduction to magnetism and magnetic materials. London: Chapman & Hall.

Said, M. M., Yunas, J., Pawinanto, R. E., Majlis, B. Y., and Bais, B. (2016). PDMS based electromagnetic actuator membrane with embedded magnetic particles in polymer composite. Sensor and Actuators A: Physical, 245, 85-96. https://doi.org/10.1016/j.sna.2016.05.007

Hu, X., Liang, Z., Li, Q., Hu, S., and Qu, S. (2022). Experimental study on the magnetic permeability of inclusion filled soft polymeric composite for soft-core transformer applications. Polymer Testing, 106, Article 107430. https://doi.org/10.1016/j.polymertesting.2021.107430

Lin, Y., Liu, X., Yang, H., Wang, F., and Liu, C. (2017). Magnetic and dielectric properties of laminated Ca(Zn1/3Nb2/3)O3Ni0.8Zn0.2Fe2O4 magneto-dielectric composites. Material Research Bullretin, 86, 101-106. https://doi.org/10.1016/j.materresbull.2016.10.002

Lei, M., Yu, K., Lu, H., and Qi, H. J. (2017). Influence of structural relaxation on thermomechanical and shape memory performances of amorphous polymers. Polymer, 109, 216-228. https://doi.org/10.1016/j.polymer.2016.12.047

Ni, X., Dong, A., Fan, X., Wang, Q., Yu, Y., and Paulo, A. C. (2015). Jute/polypropylene composites: effect of enzymatic modification on thermo-mechanical and dynamic mechanical properties. Fibers and Polymers, 16, 2276-2283. http://doi.org/10.1007/s12221-015-5475-7

Dobak, S., Fuzer, J., Kollar, P., Fáberova, M., and Bures, R. (2017). Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites. Journal of Magnetism and Magnetic Materials, 426, 320-327. https://doi.org/10.1016/j.jmmm.2016.11.084

Xia, X., Zhong, Z., and Weng, G. J. (2017). Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42-50. https://doi.org/10.1016/j.mechmat.2017.03.014

Downloads

Published

2025-11-16

How to Cite

Hunyek, A. (2025). The Influence of the Quantity of Magnetic Materials Extracted from Electronic Waste on The Modulus and Electromagnetic Parameters of Polypropylene Composites. Srinakharinwirot University Journal of Sciences and Technology, 17(2, July-December), 1–16, Article 254437. retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/254437