Periods of Fibonacci Functions Modulo m
Main Article Content
Abstract
A Fibonacci function is a function f: Z → Z such that f(x+2) = f(x+1) + f(x) for all x∈Z. A Fibonacci function is a generalization of the Fibonacci sequence and Lucas sequence. The purpose of this research is to study periods of Fibonacci functions modulo m and connect to the period of the Fibonacci sequence and Lucas sequence modulo m
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Koshy, T. (2001). Fibonacci and Lucas Number with Applications. New Jersey: John Wiley & Sons, Inc.
Jisawat, K., & Jitpitak, S. (2552). Some Divisibility Properties of Fibonacci Numbers. Thaksin University Journal, 12(2), 50-58.
Wiboonton, K. (2560). The Fibonacci Sequence in Mathematics Courses. Math Journal, 62(691), 1-11.
Carlitz, L., & Ferns, H. H. (1970). Some Fibonacci and Lucas Identities. Fibonacci Quarterly, 8, 61-73.
Luca, F. (2003). Fibonacci and Lucas Numbers with only One Distinct Digit. Portugaliae Mathematica, 57(2), 243-254.
Elmore, M. (1967). Fibonacci Functions. Fibonacci Quarterly, 5, 371-382.
Bunder, M. W. (1978). More Fibonacci Functions. Fibonacci Quarterly, 16, 97-98.
Spickerman, W. R. (1970). A Note on Fibonacci Functions. Fibonacci Quarterly, 8, 397-401.
Jameson, G. J. O. (2018). Fibonacci Periods and Multiples. Mathematical Gazette, 102(553), 63-76.