The Fabrication and Properties of Schottky Contact between Au/TiO2 Nanotubes Semiconductors

Main Article Content

Watchareeya Chaiyarat
Udom Tipparach
Ki-Seak An

Abstract

This work aims to investigate the phenomena of Schottky barrier between Au/TiO2 nanotubes. The microstructure and surface morphologies of TiO2 nanotubes were characterized by XRD, SEM and XPS. Micro-layers of Au were deposited on TiO2 nanotubes surface by thermal evaporation. The two electronic probes were employed to confirm Schottky contact barrier between Au/TiO2 interface. The IV characteristic curves can be explained by the energy band diagram.

Article Details

Section
Research Articles

References

Mor, G. K., Carvalho, M. A., Varghese, O. K., Pishko, M. V., & Grimes, C. A. (2004). A roomtemperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research, 19(2), 628–634.

Varghese, O. K., Mor, G. K., Paulose, M., & Grimes, C. A. (2004). A Titania nanotube-array room-temperature sensor for selective detection of low hydrogen concentrations. MRS Proceedings, 828. A3.1/K4.1. DOI: https://doi.org/10.1557/PROC-828-A3.1/K4.1.

Paulose, M., Varghese, O. K., Mor, G. K., Grimes, C. A., & Ong, K. G. (2006). Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology, 17(2), 398–402.

Xie, Y., Huang, H., Yang, W., & Wu, Z. (2011). Low dark current metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO2 films. Journal of Applied Physics, 109(2), 023114.

Su, Y., Han, S., Zhang, X., Chen, X., & Lei, L. (2008). Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Materials Chemistry and Physics, 110(2-3), 239–246.

Erdem, B., Hunsicker, R. A., Simmons, G. W., Sudol, E. D., Dimonie, V. L., & El-Aasser, M. S. (2001). XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir, 17(9), 2664–2669.

Zhu, J., Chen, F., Zhang, J., Chen, H., & Anpo, M. (2006). Fe3+-TiO2 photocatalysts prepared bycombining sol–gel method with hydrothermal treatment and their characterization. Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 196–204.

Li, L., Wu, P., Fang, X., Zhai, T., Dai, L., Liao, M., … Golberg, D. (2010). Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Advanced Materials, 22(29), 3161–3165.

Monroy, E., Omnes, F., & Calle, F. (2003). Wide–bandgap semiconductor ultraviolet photodetectors. Semiconductor Science and Technology, 18(4), R33–R51.

Kashiwaya, S., Morasch, J., Streibel, V., Toupance, T., Jaegermann, W., & Klein, A. (2018). The work function of TiO2. Surfaces, 1(1), 73–89.

Uda, M., Nakamura, A., Yamamoto, T., & Fujimoto, Y. (1998). Work function of polycrystalline Ag, Au and Al. Journal of Electron Spectroscopy and Related Phenomena, 88-91, 643–648.

Pierret, R. F. (1996). Semiconductor Device Fundamentals (2nd Ed). Massachusetts: Addison-Wesley Publishing Co.