CO2 decomposition using the coaxial dielectric barrier discharge: effect of additive gas and double outer electrodes

Main Article Content

Nikom Rattanarojanakul
Somyos Srikhongrak
Witoon Nulek
Yutthana Tirawanichakul

Abstract

This work has studied CO2 decomposition through the dielectric barrier discharge (DBD). The configuration of the DBD reactor was performed as a coaxial DBD tube. The dielectric barrier was made of a quartz tube with 1 mm thickness, while an outer electrode was made of a copper flat sheet wrapping around a quartz tube. The coaxial axis was made of stainless steel rod to be an inner electrode. The power source was applied by the alternative current (AC) high voltage with 7.8 kHz of frequency to both electrodes of the plasma reactor. The experiment was conducted on various conditions such as a mixed gas ratio, discharge gap, applied voltage, outer electrode length, two outer electrodes, and gas flow rate. The results showed that CO2 conversion was decreased when CO2 concentration increased. Similarly, the increase of gas flow rate also caused the decrease of CO2 conversion. Whilst the increase of an applied voltage causes the CO2 conversion clearly increased. Similarly, the CO2:Ar ratio of 60%:40% achieved 30% of CO2 conversion. Furthermore, the high percentage of CO2 conversion of 47.2% has been obtained from a 1.3 mm discharge gap with 40 ml/min of gas flow rate.

Article Details

Section
Research Articles

References

Guangyin, Z.; Youcai, Z. Pollution Control and Resource Recovery for Sewage Sludge, Guangyin, Z., Youcai, Z., Eds.; Butterworth-Heinemann, 2017; pp. 352-275.

Da Costa Gomez, C. The Biogas Handbook, Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing, 2013; pp. 1-16.

Lyon, D. R. Environmental and Health Issues in Unconventional Oil and Gas Development, Kaden, D., Rose, T., Eds.; Elsevier, 2016; pp. 33-48.

Rueangjitt, N.; Akarawitoo, C.; Chavadej, S. Production of Hydrogen-Rich Syngas from Biogas Reforming with Partial Oxidation Using a Multi-Stage AC Gliding Arc System. Plasma Chemistry and Plasma Processing 2012, pp. 583-596.

Kroker, T.; Kolb, T.; Schenk, A.; Krawczyk, K.; Mlotek, M.; Gericke, K.-H. Catalytic Conversion of Simulated Biogas Mixtures to Synthesis Gas in a Fluidized Bed Reactor Supported by a DBD. Plasma Chemistry and Plasma Processing 2012, pp. 1-18.

Kolb, T.; Kroker, T.; Voigt, J.; Gericke, K.-H. Wet Conversion of Methane and Carbon Dioxide in a DBD Reactor. Plasma Chemistry and Plasma Processing 2012, pp. 1-17.

Qi, W.; Huiling, S.; Binhang, Y.; Yong, J.; Yi, C. Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor. International Journal of Hydrogen Energy 2011, pp. 8301-8306.

Tao, X.; Bai, M.; Li, X.; Long, H.; Shang, S.; Yin, Y.; Dai, X. CH4-CO2 reforming by plasma – challenges and opportunities. Progress in Energy and Combustion Science 2011, pp. 113-124.

Indarto, A.; Choi, J.-W.; Lee, H.; Song, H. K. Decomposition of greenhouse gases by plasma. Environmental Chemistry Letters 2008, pp. 215-222.

Wang, S.; Zhang, Y.; Liu, X.; Wang, X. Enhancement of CO2 Conversion Rate and Conversion Efficiency by Homogeneous Discharges. Plasma Chemistry and Plasma Processing 2012, pp. 979-989.

Lee, D.; Kim, K.-T.; Song, Y.-H.; Kang, W.; Jo, S. Mapping Plasma Chemistry in Hydrocarbon Fuel Processing Processes. Plasma Chemistry and Plasma Processing 2012, pp. 1-21.

Indarto, A.; Yang, D> R.; Choi, J.-W.; Lee, H.; Song, H. K. Gliding arc plasma processing of CO2 conversion. Journal of Hazardous Materials 2007, pp. 309-315.

Babaie, M.; Davari, P.; Talebizadeh, P.; Zare, F.; Rahimzadeh, H.; Ristovski, Z.; Brown, R. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction. Chemical Engineering Journal 2015, pp. 240-248.

Wen, Y.; Jiang, X. Decomposition of CO2 Using Pulsed Corona Discharges Combined with Catalyst. Plasma Chemistry and Plasma Processing 2001, pp. 665-678.

Yoshida, K.; Rajanikanth, B. S.; Okubo, M. NOx Reduction and Desorption Studies Under Electric Discharge Plasma Using a Simulated Gas Mixture: A Case Study on the Effect of Corona Electrodes. Plasma Science and Technology 2009, pp. 327-333.

Xiang, L.; Xumei, T.; Yongxiang, Y. An Atmospheric-Pressure Glow-Discharge Plasma Jet and Its Application. IEEE Transaction on Plasma Science 2009, pp. 759-763.

Chang, M. D.; Jian, H. Y.; Bruno, C. Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Science and Technology 2007, pp. 791-799.

Xu, S.; Khalaf, P.; Martin, P.; Christopher, W. J. CO2 dissociation in a packed-bed plasma reactor: Effects of operating conditions. Plasma Science and Technology 2018, Volume 27, pp. 1-13.

Fridman, A. Plasma Chemistry, Cambridge University Press: New York, 2008; p. 978.

Spencer, L.; Gallimore, A. Efficiency of CO2 Dissociation in a Radio-Frequency Discharge. Plasma Chemistry and Plasma Processing 2011, pp. 79-89.

Mei, D.; Zhu, X.; Wu, C.; Ashford, B.; Williams, P. T.; Tu, X. Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis. Applied Catalysis B: Environmental 2016, Volume 182, pp. 525-532.

Yu, Q.; Kong, M.; Liu, T.; Fei, J.; Zheng, X. Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor. Plasma Chemistry and Plasma Processing 2012, pp. 153-163.

Zheng, G.; Jiang, J.; Wu, Y.; Zhang, R.; Hou, H. The Mutual Conversion of CO2 and CO in Dielectric Barrier Discharge (DBD). Plasma Chemistry and Plasma Processing 2003, pp. 59-68.

Danhua, M.; Xinbo, Z.; Ya-Ling, H.; Joseph, D. Y.; Xin, T. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Science and Technology 2015, Volume 24, pp. 1-10.

Tendero, C.; Tixier, C.; Tristant P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 2006, pp. 2-30.

Wagenaars, E.; Brandenburg, R.; Brok, W. J. M.; Bowden, M. D.; Wagner, H.-E. Experimental and modelling investigations of a dielectric barrier discharge in low-pressure argon. Journal of Physics D: Applied Physics 2006, pp. 700-711.

Wagner, H. E.; Brandenburg, R.; Kozlov, K. V.; Sonnenfeld, A.; Michel, P.; Behnke, J. F. The barrier discharge: basic properties and applications to surface treatment. Vacuum 2003, pp. 417-436. doi:10.1016/S0042-207X(02)00765-0.

Kogelschatz, U. Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing 2003, pp. 1-46.

Paulusen, S.; Verheyde, B.; Tu, X.; Bie, C. D.; Martens, T.; Petrovic D.; Bogaerts, A.; ; Sels, B. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science and Technology, 2010; Volume 19, pp. 1-6.

Phuengkum, N.; Tirawanichakul, Y. Physics applications: IV characteristics of CO2 and O2 dielectric Barrier discharges. 2011 IEEE Colloquium on Humanities, Science and Engineering (CHUSER) 2011, pp. 805-808.