Water Quality Management Guidelines to Reduce Mortality Rate of Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus) Fingerlings Raised in Outdoor Earthen Ponds with a Recirculating Aquaculture System Using Machine Learning Techniques

Main Article Content

Putra Ali Syahbana Matondang
Wara Taparhudee
Ruangvit Yoonpundh
Roongparit Jongjaraunsuk


Machine learning techniques have been widely adopted over the last few decades, especially in fisheries. This study aimed to determine the best practice of machine learning techniques with a decision tree algorithm in reducing the mortality rate of red tilapia (Oreochromis niloticus x Oreochromis mossambicus) fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system. The study phase begins with collecting water quality parameters. The parameters were measured in the form of dissolved oxygen (mg L-1), pH, temperature (°C), total ammonia nitrogen (mg L-1), nitrite-nitrogen (mg L-1), alkalinity (mg L-1), transparency (cm), and mortality rate (fish day-1).  Data Modelling was carried out using 10-fold cross-validation. The results of the performance measurement obtained an accuracy of 89.67% with ± 5.11% (micro average: 89.60%), a precision of 86.71% ± 18.02% (micro average: 80.00%), and recall of 72.50% ± 24.86% (micro average: 71.79%), with the most influential water quality parameter being nitrite-nitrogen (mg L-1). Based on the results of this study show that data classification using a decision tree algorithm can be used as a reference to determine the decisions or actions of fish farmers in reducing the mortality rate of red tilapia fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system.


Download data is not yet available.

Article Details

Research Articles


Fang, W.; Huang, J.; Li, S.; Lu, J. Identification of pigment genes (melanin, carotenoid and pteridine) associated with skin color variant in red tilapia using transcriptome analysis. Aquaculture. 2022, 547, 737429.

Jongjaraunsuk, R.; Taparhudee, W. Weight estimation model for red tilapia (Oreochromis niloticus Linn.) from images. Agriculture and Natural Resources. 2022, 56(1), 215-224.

FAO. The State of World Fisheries and Aquaculture 2020. FAO: Rome, Italy, 2020; 244.

Brune, D.E.; Schwartz, G.; Eversole, A.G.; Collier, J.A.; Schwedler, T.E. Intensification of pond aquaculture and high rate photosynthetic systems. Aquacultural Engineering. 2003, 28(1-2), 65-86.

Putra, I.; Effendi, I.; Lukistyowati, I.; Tang, U.M. Growth and survival rate of red tilapia (Oreochromis Sp.) cultivated in the brackish water tank under biofloc system. Advances in Engineering Research. 2019, 190, 96-99.

Azaza, M.S.; Dhraïef, M.N.; Kraïem, M.M. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in Southern Tunisia. Journal of Thermal Biology. 2008, 33(2), 98-105.

Ekasari, J.; Rivandi, D.R.; Firdausi, A.P.; Surawidjaja, E.H.; Zairin, M.; Bossier, P.; De Schryver, P. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 2015, 441, 72-77.

García-Ríos, L.; Miranda-Baeza, A.; Coelho-Emerenciano, M.G.; Huerta-Rábago, J.A.; Osuna-Amarillas, P. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture. 2019, 502, 26-31.

Lekang, O.I. Aquaculture Engineering. Blackwell Publishing: United Kingdom, 2007; 354.

Dalsgaard, J.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquacultural Engineering. 2013, 53, 2-13.

Wambua, D.M.; Home, P.G.; Raude, J.M.; Ondimu, S. Environmental and energy requirements for different production biomass of Nile tilapia (Oreochromis niloticus) in recirculating aquaculture systems (RAS) in Kenya. Aquaculture and Fisheries. 2021, 6(6), 593-600.

Delong, D.P.; Losordo, T.M.; Rakocy, J.E. Tank Culture of Tilapia. SRAC Publication, 2009; 8.

Xiao, G.; Cheng, X.; Xie, J.; Zhu, D. Assessment of aeration plug-flow devices used with recirculating aquaculture systems on the growth of tilapia Oreochromis niloticus. Aquacultural Engineering. 2020, 91, 102116.

Srithong, C.; Musig, Y.; Areechon, N.; Taparhudee, W. Water quality and growth performance of hybrid catfish (Clarias macrocephalus x C. gariepinus) comparison in two type of water recirculating system and a water exchange system. Kasetsart University Fisheries Research Bulletin. 2015, 39(3), 57-69.

Avnimelech, Y. Biofloc Technology: A Practical Guide Book, 3rd ed.; World Aquaculture Society: Baton Rouge, United States of America, 2014; 258.

FAO. The State of World Fisheries and Aquaculture. FAO: Rome, Italy, 2018; 227.

Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture. 2021, 540, 736724.

Samuel Some studies in machine learning using the game of checker. IBM Journal of Research and Development. 2000, 44(1/2), 206-226.

Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors (Basel). 2018, 18(8), 2674.

Azad, M.; Moshkov, M. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions. European Journal of Operational Research. 2017, 263(3), 910-921.

Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, Northern Iran. Sci Total Environ. 2018, 627, 744-755.

Ho, J.Y.; Afan, H.A.; El-Shafie, A.H.; Koting, S.B.; Mohd, N.S.; Jaafar, W.Z.B.; Lai Sai, H.; Malek, M.A.; Ahmed, A.N.; Mohtar, W.H.M.W.; Elshorbagy, A.; El-Shafie, A. Towards a time and cost effective approach to water quality index class prediction. Journal of Hydrology. 2019, 575, 148-165.

Everaert, G.; Bennetsen, E.; Goethals, P.L.M. An applicability index for reliable and applicable decision trees in water quality modelling. Ecological Informatics. 2016, 32, 1-6.

Kotu, V.; Deshpande, B. Getting Started with RapidMiner, 2nd ed., 2019; 15.

APHA. Standard Methods, 23rd ed.; American Public Health Association: Washington DC, United States of America, 2017; 545.

Abdel-Tawwab, M.; Hagras, A.E.; Elbaghdady, H.A.M.; Monier, M.N. Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of nile tilapia, Oreochromis niloticus. Journal of Applied Aquaculture. 2014, 26(4), 340-355.

FAO. Handbook on Enhancing the Entrepreneurial Capability of Farmers. FAO: Bangkok, Thailand, 2021; 72.

El-Sayed, A.F.M. Environmental requirements. In Tilapia Culture, Academic Press: Alexandria, Egypt, 2020, 47-67.

Tsadik. G, G.; Kutty. M, N. Influence of ambient oxygen on feeding and growth of the tilapia, Oreochromis niloticus (Linnaeus). African Regional Aquaculture Centre. 1987, 13.

Li, D.; Liu, S. Water quality monitoring in aquaculture. In Water Quality Monitoring and Management, Academic Press: India, 2019, 303-328.

El-Sherif, M.S.; El-Feky, A.M.I. Performance of nile tilapia (Oreochromis niloticus) fingerlings. I. Effect of pH. International Journal of Agriculture and Biology. 2009, 11, 297-300.

Boyd, C.E.; Pillai, V.K. Water Quality Management for Pond Fish Culture, 22nd ed.; CMFRI Special Publication: Alabama, United States, 1984; 96.

El-Sherif, M.S.; El-Feky, A.M.I. Performance of nile tilapia (Oreochromis niloticus) fingerlings. II. Influence of different water temperatures. International Journal of Agriculture and Biology. 2009, 11, 301-305.

Xie, S.; Zheng, K.; Chen, J.; Zhang, Z.; Zhu, X.; Yang, Y. Effect of water temperature on energy budget of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition. 2011, 17(3), e683-e690.

El-Sayed, A.-F.M.; Kawanna, M. Optimum water temperature boosts the growth performance of Nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquaculture Research. 2008, 39(6), 670-672.

Sifa, L.; Chenhong, L.; Dey, M.; Gagalac, F.; Dunham, R. Cold tolerance of three strains of nile tilapia, Oreochromis niloticus, in China. Aquaculture. 2002, 213(1-4), 123-129.

Balarin, J.D.; Haller, R.D. The intensive culture of tilapia in tanks, raceways and cages. In Recent Advances in Aquaculture, Croom Helm: London, United Kingdom, 1982, 266-355.

Hargreaves, J.A.; Tucker, C.S. Managing Ammonia in Fish Ponds. SRAC Publication: United States of America, 2004; 8.

Jongjaraunsuk, R.; Is-haak, J.; Taparhudee, W. Feeding rate of red tilapia (Oreochromis niloticus mossambicus) and correlation between feed intake and water quality. RMUTSB Academic Journal. 2019, 7, 166-180.

Benli, A.Ç.K.; Köksal, G. The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turkish Journal of Veterinary and Animal Sciences. 2005, 29(2), 339-344.

Chervinski, J. The Biology and Culture of Tilapias : Environmental physiology of tilapias. in ICLARM Conference Proceedings. 1982. Manila, Philippines: ICLARM.

Hargreaves, J.A.; Kucuk, S. Effects of diel un-ionized ammonia fluctuation on juvenile hybrid striped bass, channel catfish, and blue tilapia. Aquaculture. 2001, 195(1-2), 163-181.

Redner, B.D.; Stickney, R.R. Acclimation to Ammonia by Tilapia aurea. Transactions of the American Fisheries Society. 1979, 108(4), 383-388.

Sikora, M.; Nowosad, J.; Kucharczyk, D. Nitrogen compound oxidation rate in recirculation systems using three biological filter medias in rearing common carp (Cyprinus carpio L.) juveniles. Aquaculture. 2022, 547, 737532.

Ebeling, J.; Jensen, G.; Losordo, T.; Masser, M.; McMullen, J.; Pfeiffer, L.; Rakocy, J. Model Aquaculture Recirculation System (MARS). National Council for Agricultural Education: Lowa State University, United States, 1995; 51.

Deane, E.E.; Woo, N.Y. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba. Aquat Toxicol. 2007, 82(2), 85-93.

Ciji, A.; Akhtar, M.S. Nitrite implications and its management strategies in aquaculture: A review. Reviews in Aquaculture. 2019, 12(2), 878-908.

Jensen, F.B. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2003, 135(1), 9-24.

Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management, 1 ed.; Kluwer Academic Publisher: Boston, 1998; 634

Atwood, H.L.; Fontenot, Q.C.; Tomasso, J.R.; Isely, J.J. Toxicity of nitrite to nile tilapia: Effect of fish size and environmental chloride. North American Journal of Aquaculture. 2001, 63(1), 49-51.

Cavalcante, D.D.H.; Poliato, A.D.S.; Ribeiro, D.C.; Magalhães, F.B.; Carmo-e-Sá, M.V. Effects of CaCO3 liming on water quality and growth performance of fingerlings of nile tilapia, Oreochromis niloticus. Acta Scientiarum. Animal Sciences. 2009, 31(3), 327-333.

Feng, L.; Hou, X.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sensing of Environment. 2019, 221, 675-686.

Bai, S.; Gao, J.; Sun, D.; Tian, M. Monitoring water transparency in shallow and eutrophic lake waters based on GOCI observations. Remote Sensing. 2020, 12(1), 163.

Ghosh, S.; Sarita; Senthamilan, S.; Chatterjee, S. Optimum condition of water for aquaculture. Agriallis. 2019, 1(4), 18-22.