Effect of Post-harvesting with Different Photoperiods under Artificial Light Sources on Nitrate and Vitamin C Contents in Hydroponic Green Oak Lettuce

Main Article Content

Nang Myint Phyu Sin Htwe
Maneerat Rawangpai
Eaknarin Ruangrak

Abstract

Green oak lettuce (Lactuca sativa L.) is a popular vegetable for consumers, but it is concerned about nitrate contamination that may harm human health. However, light can affect nitrate reduction and contribute to the accumulation of vitamin C in vegetables. Therefore, this study focused on the effects of post-harvesting with different photoperiods under artificial light sources on vitamin C and nitrate content in hydroponic green oak lettuce. Green oak lettuces were grown in the NFT system, harvested, and post-harvested under Bulb-LED (Experiment I), Bar-LED (Experiment II), and fluorescent lamp (FL) (Experiment III) for 6, 12, and 24 h photoperiods and replaced the nutrient solution with tap water. The nitrate content was significantly reduced after post-harvesting for 12 h photoperiods under FL (9,012 µg NO3- -N/g dry weight) followed by Bulb-LED (13,985 µg NO3- -N/g dry weight) and 24 h photoperiods for Bar-LED (10,727 µg NO3- -N/g dry weight). Vitamin C content was highest after post-harvesting for 24 h photoperiods under Bar-LED (45.47 µg/ml), followed by Bulb-LED (44.73 µg/ml) and FL (35.40 µg/ml). Post-harvesting with artificial light sources for 12 to 24 h photoperiods can improve hydroponic green oak lettuce quality.

Article Details

Section
Research Articles

References

Alagawany, M.; Attia, Y.A.; Farag, M.R.; Elnesr, S.S.; Nagadi, S.A.; Shafi, M.E.; Khafaga, A.F.; Ohran, H.; Alaqil, A.A.; Abd El-Hack, M.E. The strategy of boosting the immune system under the COVID-19 pandemic. Front. Vet. Sci. 2020, 7, 570748, https://doi.org/10.3389/fvets.2020.570748.

Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agric. 2015, 95, 869–877, https://doi.org/10.1002/jsfa.6789.

Chang, A.C.; Yang, T.Y.; Riskowski, G.L. Ascorbic acid, nitrate, and nitrite concentration relationship to the 24 hour light/dark cycle for spinach grown in different conditions. Food Chem. 2013, 138, 382–388, https://doi.org/10.1016/j.foodchem.2012.10.036.

Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211, https://doi.org/10.3390/nu9111211.

Dowdle, J.; Ishikawa, T.; Gatzek, S.; Rolinski, S.; Smirnoff, N. Two genes in Arabidopsis Thaliana encoding GDP-L-Galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J. Cell Mol. Biol. 2007, 52, 673–689, https://doi.org/10.1111/j.1365-313X.2007.03266.x.

Laing, W.; Norling, C.; Brewster, D.; Wright, M.; Bulley, S. Ascorbate concentration in Arabidopsis Thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle 2017, 138008.

Aćamović-Djoković, G.; Pavlović, R.; Mladenović, J.; Djurić, M. Vitamin C content of different types of lettuce varieties. Acta Agric. Serbica 2011, 17, 83–89.

Htwe, N.M.P.S.; Ruangrak, E. A review of sensing, uptake, and environmental factors influencing nitrate accumulation in crops. J. Plant Nutr. 2021, 44, 1054–1065, https://doi.org/10.1080/01904167.2021.1871757.

Abdel Mohsen, M.A.; Hassan, A.A.; El-Sewedy, S.M.; Aboul-Azm, T.; Magagnotti, C.; Fanelli, R.; Airoldi, L. Biomonitoring of N-nitroso compounds, nitrite and nitrate in the urine of egyptian bladder cancer patients with or without schistosoma haematobium infection. Int. J. Cancer 1999, 82, 789–794, https://doi.org/10.1002/(SICI)1097-0215(19990909)82:6<789::AID-IJC3>3.0.CO;2-C.

Eroğlu, A.; Demirci, S.; Ayyildiz, A.; Kocaoğlu, H.; Akbulut, H.; Akgül, H.; Elhan, H.A. Serum concentrations of vascular endothelial growth factor and nitrite as an estimate of in vivo nitric oxide in patients with gastric cancer. Br. J. Cancer 1999, 80, 1630–1634, https://doi.org/10.1038/sj.bjc.6690573.

Wu, T.; Wang, Y.; Ho, S.-M.; Giovannucci, E. Plasma levels of nitrate and risk of prostate cancer: a prospective study. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2013, 22, 1210–1218, https://doi.org/10.1158/1055-9965.EPI-13-0134.

Du, S.; Zhang, Y.; Lin, X. Accumulation of nitrate in vegetables and its possible implications to human health. Agric. Sci. China 2007, 6, 1246–1255, https://doi.org/10.1016/S1671-2927(07)60169-2.

Santamaria, P. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17, https://doi.org/10.1002/jsfa.2351.

Petpiamsiri, C.; Siritientong, T.; Kangsadalampai, K.; Tongyonk, L. The nitrate content in some green leafy vegetables with different cultivation methods in Thailand. Thai J. Public Health 2018, 48, 385–397.

Stitt, M. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 1999, 2, 178–186, https://doi.org/10.1016/S1369-5266(99)80033-8.

Arah, I.K.; Amaglo, H.; Kumah, E.K.; Ofori, H. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: a mini review. Int. J. Agron. 2015, 2015, e478041, https://doi.org/10.1155/2015/478041.

Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium Sativum L.) as affected by pre- and post-harvest conditions: a review. Food Chem. 2016, 211, 41–50, https://doi.org/10.1016/j.foodchem.2016.05.029.

Perera, W.P.T.D.; Navaratne, S.B.; Wickramasinghe, I. Review on effect of postharvest illumination by fluorescent and ultraviolet light waves on the quality of vegetables. J. Food Process Eng. 2022, 45, e13960, https://doi.org/10.1111/jfpe.13960.

Liu, S.; Hu, L.; Jiang, D.; Xi, W. Effect of post-harvest LED and UV light irradiation on the accumulation of flavonoids and limonoids in the segments of newhall navel oranges (Citrus Sinensis Osbeck). Mol. Basel Switz. 2019, 24, E1755, https://doi.org/10.3390/molecules24091755.

Nassarawa, S.S.; Abdelshafy, A.M.; Xu, Y.; Li, L.; Luo, Z. Effect of light-emitting diodes (LEDs) on the quality of fruits and vegetables during postharvest period: a review. Food Bioprocess Technol. 2021, 14, 388–414, https://doi.org/10.1007/s11947-020-02534-6.

Poonia, A.; Pandey, S.; Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. Food Prod. Process. Nutr. 2022, 4, 8, https://doi.org/10.1186/s43014-022-00086-0.

Sirinupong, M. Practical for Soilless Culture in Thailand; 4th ed.; Fram-up design, Bangkok, 2017.

Etae, N.; Wamae, Y.; Khummueng, W.; Utaipan, T.; Ruangrak, E. Effects of artificial light sources on growth and phytochemicals content in green oak lettuce. Hortic. Bras. 2020, 38, 204–210, https://doi.org/10.1590/s0102-053620200213.

Lastra, O.C. Derivative spectrophotometric determination of nitrate in plant tissue. J. AOAC Int. 2003, 86, 1101–1105.

Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using folin phenol reagent. Anal. Biochem. 1982, 127, 178–182, https://doi.org/10.1016/0003-2697(82)90162-2.

Chow, F. Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. In; 2012 ISBN 978-953-51-0061-4.

Sanz-Luque, E.; Chamizo-Ampudia, A.; Llamas, A.; Galvan, A.; Fernandez, E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 2015, 6, 899, https://doi.org/10.3389/fpls.2015.00899.

Bucher, M.; Kossmann, J. Chapter 15 - molecular physiology of the mineral nutrition of the potato. In Potato Biology and Biotechnology; Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Mackerron, D.K.L., Taylor, M.A., Ross, H.A., Eds.; Elsevier Science B.V.: Amsterdam, 2007; 311–329 ISBN 978-0-444-51018-1.

Qiu, W.; Wang, Z.; Huang, C.; Chen, B.; Yang, R. Nitrate accumulation in leafy vegetables and its relationship with water. J. Soil Sci. Plant Nutr. 2014, 14, 761–768, https://doi.org/10.4067/S0718-95162014005000061.

Guffanti, D.; Cocetta, G.; Franchetti, B.M.; Ferrante, A. The effect of flushing on the nitrate content and postharvest quality of lettuce (Lactuca Sativa L. Var. Acephala) and rocket (Eruca Sativa Mill.) grown in a vertical farm. Horticulturae 2022, 8, 604, https://doi.org/10.3390/horticulturae8070604.

Wanlai, Z.; Wenke, L.; Qichang, Y. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes. J. Plant Nutr. 2013, 36, 481–490, https://doi.org/10.1080/01904167.2012.748069.

Cometti, N.N.; Martins, M.Q.; Bremenkamp, C.A.; Nunes, J.A. Nitrate concentration in lettuce leaves depending on photosynthetic photon flux and nitrate concentration in the nutrient solution. Hortic. Bras. 2011, 29, 548–553, https://doi.org/10.1590/S0102-05362011000400018.

Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: from functions to biofortification. Antioxidants 2019, 8, 519, https://doi.org/10.3390/antiox8110519.

Rosado-Souza, L.; Fernie, A.R.; Aarabi, F. Ascorbate and thiamin: metabolic modulators in plant acclimation responses. Plants 2020, 9, 101, https://doi.org/10.3390/plants9010101.