Experimental Study on Convective Heat Transfer and Pressure Drop Characteristics of an Alternating Cross-Section Flattened Tube with Different Twist Angle
Main Article Content
Abstract
In this research, the heat transfer coefficient (HTC) and pressure drop of alternating cross-section flattened (ACF) tubes were investigated experimentally and compared with the same parameters of a circular tube. Three different ACF tubes were fabricated from circular copper tubing with an internal diameter of 4.5 mm, a thickness of 1 mm, and a length of 400 mm. The twist angles were 30, 45, and 90°. The experimental ranges covered a mass flux of 729–1,434 kg/m2s and a heat flux of 12–30 kW/m2. The results showed that the HTC and pressure drop increased with mass flux. The HTC decreased with increments of heat flux, but the pressure drop did not change. The HTC and pressure drop of the ACF tubes were higher than those of the circular tube. The ACF tube with 90° twist angles produced the highest HTC, and the thermal performance of that tube was about 27% better than the thermal performance of the circular tube.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Webb, R.L.; Kim, N.H. Principles Enhanced Heat Trans, 2nd ed.; Taylor & Francis Group: 270 Madison Avenue, New York, 2005, 3-10. https://doi.org/10.1201/b12413
Dang, W.; Wang, L.B. Convective heat transfer enhancement mechanisms in circular tube inserted with a type of twined coil. Int. J. Heat Mass Transf. 2021, 169, 120960. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120960
Cong, T.; Wang, B.; Gu, H. Numerical analysis on heat transfer enhancement of sCO2 in the tube with twisted tape. Nucl. Eng. Des. 2022, 397, 111940. https://doi.org/10.1016/j.nucengdes.2022.111940
Harish, H.V.; M-Tech.; Manjunath, K. Heat and fluid flow behaviors in a laminar tube flow with circular protruded twisted tape inserts. Case Stud. Therm. Eng. 2022, 32, 101880. https://doi.org/10.1016/j.csite.2022.101880
Kaood, A.; Fadodun, O.G. Numerical investigation of turbulent entropy production rate in conical tubes fitted with a twisted-tape insert. Int. Commun. Heat Mass Transf. 2022, 139, 106520. https://doi.org/10.1016/j.icheatmasstransfer.2022.106520
Zhang, H.; Nunayon, S.S.; Jin, X.; Lai, A.C.K. Pressure drop and nanoparticle deposition characteristics for multiple twisted tape inserts with partitions in turbulent duct flows. Int. J. Heat Mass Transf. 2022, 193, 121474. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121474
Pourpasha, H.; Heris, S.Z.; Mahian, O.; Wongwises, S. The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants. Powder Technology. 2020, 367, 133-142. https://doi.org/10.1016/j.powtec.2020.03.037
Ho, C.J.; Huang, S.H.; Lai, C.M. Enhancing laminar forced convection heat transfer by using Al2O3/PCM nanofluids in a concentric double-tube duct. Case Stud. Therm. Eng. 2022, 35, 102147. https://doi.org/10.1016/j.csite.2022.102147
Ozenbiner, O.; Yurddas, A. Numerical analysis of heat transfer of a nanofluid counterflow heat exchanger. Int. Commun. Heat Mass Transf. 2022, 137, 106306. https://doi.org/10.1016/j.icheatmasstransfer.2022.106306
Zhang, C.; Han, S.; Wu, Y.; Zhang, C.; Guo, H. Investigation on convection heat transfer performance of quaternary mixed molten salt based nanofluids in smooth tube. Int. J. Therm. Sci. 2022, 177, 107534. https://doi.org/10.1016/j.ijthermalsci.2022.107534
Ma, H.; He, B.; Su, L.; He, D. Heat transfer enhancement of nanofluid flow at the entry region of microtubes. Int. J. Therm. Sci. 2023, 184, 107944. https://doi.org/10.1016/j.ijthermalsci.2022.107944
Cruz, G.G.; Mendes, M.A.A.; Pereira, J.M.C.; Santos, H.; Nikulin, A.; Moita, A.S. Experimental and numerical characterization of single-phase pressure drop and heat transfer enhancement in helical corrugated tubes. Int. J. Heat Mass Transf. 2021, 179, 121632. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121632
Cheng, X.; Li, Z-R.; Wan, H-N.; Bi, Q.; Ji, W-T. Experimental investigation on convective heat transfer of hydrocarbon fuel in transverse corrugated tubes. Int. J. Heat Mass Transf. 2023, 201, 123586. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123586
Liao, W.; Lian, S. Effect of compound corrugation on heat transfer performance of corrugated tube. Int. J. Therm. Sci. 2023, 185, 108036. https://doi.org/10.1016/j.ijthermalsci.2022.108036
Holagh, S.G.; Abdous, M.A.; Rastan, H.; Shafiee, M.; Hashemian, M. Performance analysis of micro-fin tubes compared to smooth tubes as a heat transfer enhancement technique for flow condensation. Energy Nexus. 2022, 8, 100154. https://doi.org/10.1016/j.nexus.2022.100154
Moon, S.H.; Lee, D.; Kim, M.; Kim, Y. Evaporation heat transfer coefficient and frictional pressure drop of R600a in a micro-fin tube at low mass fluxes and temperatures. Int. J. Heat Mass Transf. 2022, 190, 122769. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122769
Kaew-On, J.; Naphattharanun, N.; Binmud, R.; Wongwises, S. Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes. Int. J. Heat Mass Transf. 2016, 102, 86-97. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.095
Azarhazin, S.; Sajadi, B.; Fazelnia, H.; Behabadi, M.A.A.; Zakeralhoseini, S. Boiling heat transfer coefficient and pressure drop of R1234yf flow inside smooth flattened tubes: An experimental study. Appl. Therm. Eng. 2020, 165, 114595. https://doi.org/10.1016/j.applthermaleng.2019.114595
Razzaghi, M.J.P; Ghassabian, M.; Daemiashkezari, M.; Abdulfattah, A.N.; Afrouzi, H.H.; Ahmad, H. Thermo-hydraulic performance evaluation of turbulent flow and heat transfer in a twisted flat tube: A CFD approach. Case Stud. Therm. Eng. 2022, 35, 102107. https://doi.org/10.1016/j.csite.2022.102107
Liu, S.; Yin, Y.; Tu, A.; Zhu, D. Experimental investigation on shell-side performance of a novel shell and tube oil cooler with twisted oval tubes. Int. J. Therm. Sci. 2020, 152, 106290. https://doi.org/10.1016/j.ijthermalsci.2020.106290
Li, X.; Wang, L.; Feng, R.; Wang, Z.; Liu, S.; Zhu, D. Study on shell side heat transport enhancement of double tube heat exchangers by twisted oval tubes. Int. Commun. Heat Mass Transf. 2021, 124, 105273. https://doi.org/10.1016/j.icheatmasstransfer.2021.105273
Sajadi, A.; Talebi, S. Investigation of convective heat transfer, pressure drop and efficiency of ZnO/water nanofluid in alternating elliptical axis tubes. Energy Equip. Sys. 2020, 8, 203-215. https://doi.org/10.22059/EES.2020.44634
Sajadi, A.; Talebi, S. Experimental investigation of heat transfer, pressure drop, and efficiency of TiO2/Oil nanofluid in alternating flattened tubes. Energy Equip. Sys. 2022, 10, 123-136. 10.22059/EES.2022.253058
Luo, C.; Song, K. Thermal performance enhancement of a double-tube heat exchanger with novel twisted annulus formed by counter-twisted oval tubes. Int. J. Therm. Sci. 2021, 164, 106892. https://doi.org/10.1016/j.ijthermalsci.2021.106892
Farsi, M.; Khoshvaght-Aliabadi, M.; Alimoradi, A. A parametric study on heat transfer and pressure drop characteristics of circular tube with alternating flattened flow path. Int. J. Therm. Sci. 2021, 160, 106671. https://doi.org/10.1016/j.ijthermalsci.2020.106671
Babaei, H.R.; Khoshvaght-Aliabadi, M.; Mazloumi, S.H. Analysis of serpentine coil with alternating flattened axis: An insight into performance enhancement of solar ponds. Solar Energy. 2021, 217, 292-307. https://doi.org/10.1016/j.solener.2021.02.017
Rukruang, A.; Chimres, N.; Kaew‐On, J.; Wongwises, S. Experimental and numerical study on heat transfer and flow characteristics in an alternating cross‐section flattened tube. Heat Transf. Res. 2019, 48, 817-834. https://doi.org/10.1002/htj.21407
Rukruang, A.; Chimres, N.; Kaew-On, J.; Mesgarpour, M.; Mahian, O.; Wongwises, S. A critical review on the thermal performance of alternating cross-section tubes. Alexandria Eng. J. 2022, 61, 7315-7337. https://doi.org/10.1016/j.aej.2021.12.070
Rukruang, A.; Chittiphalungsri, T.; Chimres, N.; Kaew-On, J.; Mesgarpour, M.; Mahian, O.; Wongwises, S. Experimental Investigation of Thermal Performance of a Novel Alternating Cross-Section Flattened Tube Heat Exchanger. Int. J. Heat Mass Transf. 2022, 195, 123159. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123159
WEBB, R.L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int. J. Heat Mass Transf. 1981, 24, 715-726. https://doi.org/10.1016/0017-9310(81)90015-6
Skullong, S.; Promvonge, P.; Thianpong, C.; Jayranaiwachira, N. Thermal behaviors in a round tube equipped with quadruple perforated-delta-winglet pairs. Appl. Therm. Eng. 2017, 115, 229-243. https://doi.org/10.1016/j.applthermaleng.2016.12.082