Techno-Economic Assessment of a 1 MW Solar PV Rooftop System at Thaksin University (Phatthalung Campus), Thailand

Main Article Content

Jompob Waewsak
Rawit Khamharnphol
Sakrapee Khunpetch
Ismail Kamdar
Somphol Chiwamongkhonkarn
Chuleerat Kongruang
Yves Gagnon

Abstract

This study presents a techno-economic assessment of a 1 MW solar photovoltaic (PV) rooftop system at Thaksin University (Phatthalung Campus) in Thailand.  A detailed analysis of the solar PV rooftop system is performed with particular attention to the performance of different PV technologies and the effects of different tilt angles and orientations of the PV panels on the annual energy production, the specific production, and the performance ratio.  The economic analysis was performed for four scenarios: (1) self-investment and self-consumption scheme, (2) bankable and self-consumption scheme, (3) bankable and feed-in tariff (FiT) scheme, and (4) energy service company (ESCO) scheme.  The results show that the amorphous silicon/micro-crystalline silicon (a-Si/µc-Si) technology shows the lowest annual energy production and performance ratio (PR), while the copper indium disulfide (CIS) technology records the largest annual energy production and PR.  The largest annual energy production and specific production were obtained with the PV panels installed at a 10° tilt angle and with the PV modules facing South (S), while the lowest annual energy production and specific production were observed with the PV panels installed at a 45° tilt angle and the PV modules facing North (N).  The economic analysis results show that the best scenarios are Scenario 3 (bankable and FiT scheme) and Scenario 1 (self-investment and self-consumption scheme).  The findings of this research provide valuable information for regional stakeholders and policymakers regarding investments in solar PV rooftop systems.

Article Details

Section
Research Articles

References

Al-Ghussain, L.; Samu, R.; Taylan, O.; Fahrioglu, M. Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe. Inventions 2020, 5(3). https://doi.org/10.3390/inventions5030027.

Abdin, Z.; Mérida, W. Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management 2019, 196, 1068-1079. https://doi.org/10.1016/j.enconman.2019.06.068.

Dahiru, A. T.; Tan, C. W. Optimal sizing and techno-economic analysis of grid-connected nanogrid for tropical climates of the Savannah. Sustainable Cities and Society, 2020, 52, 101824. https://doi.org/10.1016/j.scs.2019.101824.

Ahmed, N.; Naveed Khan, A.; Ahmed, N.; Aslam, A.; Imran, K.; Sajid, M. B.; Waqas, A. Techno-economic potential assessment of mega scale grid-connected PV power plant in five climate zones of Pakistan. Energy Conversion and Management 2021, 237, 114097. https://doi.org/10.1016/j.enconman.2021.114097.

IRENA. Renewables Take Lion’s Share of Global Power Additions in 2021. Retrieved from https://www.irena.org/News/pressreleases/2022/Apr/Renewables-Take-Lions-Share-of-Global-Power-Additions-in-2021#:~:text=By%20the%20end%20of%202021,power%20by%209.1%20per%20cent (accessed: 13 October 2022).

Statistica. Solar photovoltaic capacity worldwide in 2021, by region. Retrieved from

https://www.statista.com/statistics/271374/new-installed-solar-photovoltaic-capacity-worldwide-by-region/ (accessed: 20 November 2022).

Lau, K. Y.; Tan, C. W.; Ching, K. Y. The implementation of grid-connected, residential rooftop photovoltaic systems under different load scenarios in Malaysia. Journal of Cleaner Production, 2021, 316, 128389. https://doi.org/10.1016/j.jclepro.2021.128389

Waewsak, J.; Chancham, C.; Mani, M.; Gagnon, Y. Estimation of Monthly Mean Daily Global Solar Radiation over Bangkok, Thailand Using Artificial Neural Networks. Energy Procedia, 2014, 57, 1160-1168.https://doi.org/10.1016/j.egypro.2014.10.103.

Yazdani, H.; Yaghoubi, M. Techno-economic study of photovoltaic systems performance in Shiraz, Iran. Renewable Energy, 2021, 172, 251-262. https://doi.org/10.1016/j.renene.2021.03.012.

Quansah, D. A.; Adaramola, M. S.; Appiah, G. K.; Edwin, I. A. Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. International Journal of Hydrogen Energy, 2017, 42(7), 4626-4635. https://doi.org/10.1016/j.ijhydene.2016.10.119.

Ali, H.; Khan, H. A. Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film based PV rooftop systems in Pakistan. Renewable Energy, 2020, 152, 347-357. https://doi.org/10.1016/j.renene.2019.12.144.

Olarewaju, R.O.; Ogunjuyigbe, A.S.O.; Ayodele, T. R.; Yusuff, A. A.; Mosetlhe, T. C. An assessment of proposed grid integrated solar photovoltaic in different locations of Nigeria: Technical and economic perspective. Cleaner Engineering and Technology, 2021, 4, 100149. https://doi.org/10.1016/j.clet.2021.100149.

Nour-eddine, I. O.; Lahcen, B.; Fahd, O. H.; Amin, B.; Aziz, O. Outdoor performance analysis of different PV technologies under hot semi-arid climate. Energy Reports, 2020, 6, 36-48. https://doi.org/10.1016/j.egyr.2020.08.023

González-González, E.; Martín-Jiménez, J.; Sánchez-Aparicio, M.; Del Pozo, S.; Lagüela, S. Evaluating the standards for solar PV installations in the Iberian Peninsula: Analysis of tilt angles and determination of solar climate zones. Sustainable Energy Technologies and Assessments, 2022, 49, 101684. https://doi.org/10.1016/j.seta.2021.101684.

Bakirci, K. General models for optimum tilt angles of solar panels: Turkey case study. Renewable and Sustainable Energy Reviews, 2012, 16(8), 6149-6159. https://doi.org/10.1016/j.rser.2012.07.009.

Mamun, M. A. A.; Islam, M. M.; Hasanuzzaman, M.; Selvaraj, J. Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 2022, 3(3), 278-290. https://doi.org/10.1016/j.enbenv.2021.02.001.

Al Garni, H. Z., Awasthi, A., & Wright, D. (2019). Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia. Renewable Energy, 133, 538-550. .https://doi.org/10.1016/j.renene.2018.10.048

Christiaanse, T. V.; Loonen, R. C. G. M.; Evins, R. Techno-economic optimization for grid-friendly rooftop PV systems – A case study of commercial buildings in British Columbia. Sustainable Energy Technologies and Assessments, 2021, 47, 101320. https://doi.org/10.1016/j.seta.2021.101320.

Mangiante, M. J.; Whung, P.-Y.; Zhou, L.; Porter, R.; Cepada, A.; Campirano, E.; Torres, M. Economic and technical assessment of rooftop solar photovoltaic potential in Brownsville, Texas, U.S.A. Computers, Environment and Urban Systems, 2020, 80, 101450. https://doi.org/10.1016/j.compenvurbsys.2019.101450.

Imam, A. A.; Al-Turki, Y. A. J. S. Techno-economic feasibility assessment of grid-connected PV systems for residential buildings in Saudi Arabia—A case study. Sustainability, 2019, 12(1), 262. https://doi.org/10.3390/su12010262.

Chimres, N.; Wongwises, S. Critical review of the current status of solar energy in Thailand. Renewable and Sustainable Energy Reviews, 2016, 58, 198-207. https://doi.org/10.1016/j.rser.2015.11.005.

Tongsopit, S. Thailand's feed-in tariff for residential rooftop solar PV systems: Progress so far. Energy for Sustainable Development, 2015, 29, 127-134. https://doi.org/10.1016/j.esd.2015.10.012.

Yoomak, S.; Patcharoen, T.; Ngaopitakkul, A. Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand. Sustainability, 2019, 11(23), 6647. https://doi.org/10.3390/su11236647.

Boddapati, V.; Nandikatti, A. S. R.; Daniel, S. A. Techno-economic performance assessment and the effect of power evacuation curtailment of a 50 MWp grid-interactive solar power park. Energy for Sustainable Development, 2021, 62, 16-28. https://doi.org/10.1016/j.esd.2021.03.005.

Sekyere, C. K. K.; Davis, F.; Opoku, R.; Otoo, E.; Takyi, G.; Atepor, L. Performance evaluation of a 20 MW grid-coupled solar park located in the southern oceanic environment of Ghana. Cleaner Engineering and Technology, 2021, 5, 100273. https://doi.org/10.1016/j.clet.2021.100273.

Kamdar, I.; Ali, S.; Taweekun, J.; Ali, H. M. Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region. Sustainability, 2021, 13(24). https://doi.org/10.3390/su132413718.

Waewsak, J.; Ali, S.; Gagnon, Y. Site suitability assessment of para rubberwood-based power plant in the southernmost provinces of Thailand based on a multi-criteria decision-making analysis. Biomass and Bioenergy, 2020, 137, 105545. https://doi.org/10.1016/j.biombioe.2020.105545.

ABB. central inverters data sheet PVS800 - 500 to 1000 kW Retrieved from https://cdn.enfsolar.com/Product/pdf/Inverter/5d538c5f7f8a8.pdf. (accessed: 15 October 2022).

Kumar, N. M.; Das, P.; Krishna, P. R. (2017). Estimation of grid feed in electricity from roof integrated Si-amorph PV system based on orientation, tilt and available roof surface area. Paper presented at the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 588-596, https://doi.org/10.1109/ICICICT1.2017.8342629.

Hafez, A. Z.; Soliman, A.; El-Metwally, K. A.; Ismail, I. M. Tilt and azimuth angles in solar energy applications – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 147-168. https://doi.org/10.1016/j.rser.2017.03.131.

Chaianong, A.; Bangviwat, A.; Menke, C.; Darghouth, N. R. Cost–Benefit Analysis of Rooftop PV Systems on Utilities and Ratepayers in Thailand. Energies, 2019, 12(12), 2265. https://doi.org/10.3390/en12122265.

Pikas, E.; Kurnitski, J.; Thalfeldt, M.; Koskela, L. J. E. Cost-benefit analysis of nZEB energy efficiency strategies with on-site photovoltaic generation. Energy, 2017, 128, 291-301. https://doi.org/10.1016/j.energy.2017.03.158.

Leurent, M.; Da Costa, P.; Rämä, M.; Persson, U.; Jasserand, F. J. E. Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries. Energy, 2018, 149, 454-472. https://doi.org/10.1016/j.energy.2018.01.149.

Kopp, R. J.; Krupnick, A. J.; Toman, M. Cost-benefit analysis and regulatory reform: an assessment of the science and the art. Retrieved from https://media.rff.org/documents/RFF-DP-97-19.pdf (accessed: 17 October 2022).

Ramadhan, M.; Naseeb, A. The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait. Renewable Energy, 2011, 36(4), 1272-1276. https://doi.org/10.1016/j.renene.2010.10.004.

Dincer, I. Environmental impacts of energy. Energy Policy, 1999, 27(14), 845-854. https://doi.org/10.1016/S0301-4215(99)00068-3.

Shukla, A. K.; Sudhakar, K.; Baredar, P. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology. Energy Reports, 2016, 2, 82-88. https://doi.org/10.1016/j.egyr.2016.04.001.

Eltamaly, A. M.; Mohamed, M. A. 8 - Optimal Sizing and Designing of Hybrid Renewable Energy Systems in Smart Grid Applications. In I. Yahyaoui (Ed.), Advances in Renewable Energies and Power Technologies, 2018. 231-313: Elsevier.

Milborrow, D. 2.15 - Wind Energy Economics. In T. M. Letcher (Ed.), Comprehensive Renewable Energy (Second Edition). 2022, 463-496. Oxford: Elsevier.

Papapetrou, M.; Kosmadakis, G. Chapter 9 - Resource, environmental, and economic aspects of SGHE. In A. Tamburini, A. Cipollina, & G. Micale (Eds.), Salinity Gradient Heat Engines. 2022, 319-353: Woodhead Publishing.

Ameur, A.; Berrada, A.; Bouaichi, A.; Loudiyi, K. Long-term performance and degradation analysis of different PV modules under temperate climate. Renewable Energy, 2022, 188, 37-51. https://doi.org/10.1016/j.renene.2022.02.025.

Schultz, D.; Clark, W. W.; Sowell, A. Chapter 7 - Life-Cycle Analysis: The Economic Analysis of Demand-Side Programs and Projects in California. In W. W. Clark (Ed.), Sustainable Communities Design Handbook. 2010, 99-137. Boston: Butterworth-Heinemann.

Anang, N.; Syd Nur Azman, S. N. A.; Muda, W. M. W.; Dagang, A. N.; Daud, M. Z. Performance analysis of a grid-connected rooftop solar PV system in Kuala Terengganu, Malaysia. Energy and Buildings, 2021, 248, 111182. https://doi.org/10.1016/j.enbuild.2021.111182.

Sewchurran, S.; Davidson, I. E. Technical and financial analysis of large-scale solar-PV in eThekwini Municipality: Residential, business and bulk customers. Energy Reports, 2021, 7, 4961-4976. https://doi.org/10.1016/j.egyr.2021.07.134.

Pita, P.; Tia, W.; Suksuntornsiri, P.; Limpitipanich, P.; Limmeechockchai, B. Assessment of feed-in-tariff policy in Thailand: impacts on national electricity prices. Energy Procedia, 2015, 79, 581-589.