Effect of Extraction Solvents on Antioxidant and Antibacterial Activity of Zingiber montanum Rhizomes


  • Parichat Thepthong Faculty of Science, Thaksin University, Phattalung 93210, Thailand
  • Kantika Rattakarn Faculty of Science, Thaksin University, Phattalung 93210, Thailand
  • Nattharawadi Ritchaiyaphum Faculty of Science, Thaksin University, Phattalung 93210, Thailand
  • Sonchai Intachai Faculty of Science, Thaksin University, Phattalung 93210, Thailand
  • Wankuson Chanasit Faculty of Science, Thaksin University, Phattalung 93210, Thailand




Zingiber montanum, solvent extraction, antioxidant, antibacterial


The Zingiber montanum rhizome has been utilized for its antiviral, immunomodulatory, anti-inflammatory, and antibacterial properties for a long time, particularly in Malaysia, Indonesia, and Thailand. Additionally, the rhizome has been a traditional ingredient in Asian cosmetic products. This study aimed to investigate the impact of different extracting solvents (hexane, dichloromethane, acetone, ethanol, methanol, 50% ethanol, and 75% ethanol) on the phenolic content, as well as the antioxidant and antibacterial activities of Zingiber montanum. The antioxidant activity was evaluated using two methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and ferric-reducing antioxidant power (FRAP) assay, while antibacterial activity was tested against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains. The methanol extract demonstrated the highest phenolic content, while the ethanol extract exhibited a slightly lower amount. In the DPPH assay, the methanol extract showed an IC50 value of 36.89 ± 2.53 µg/mL, whereas the ethanol extract displayed a marginally higher value of 38.89 ± 0.27 µg/mL. In terms of ferric-reducing antioxidant power, the ethanol extract had slightly higher FRAP values (78.65 ± 4.73 mg AAE/g) than the methanol extract (76.09 ± 4.57 mg AAE/g). All extracts exhibited low activity against the three tested bacterial strains. Ethanol extract demonstrated the most antibacterial activity, with a clear zone ranging from 10.50 to 12.00 mm. The results suggest that ethanol is a suitable solvent for extracting Zingiber montanum rhizome for value-added materials application for cosmetic products.


Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; Sharifi-Rad, M.; Yousaf, Z.; Iriti, M.; Basile, A.; Rigano, D. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules, 2017, 22, 2145. https://doi.org/10.3390/molecules22122145.

Hassan, Md.M.; Adhikari-Devkota, A.; Imai, T.; Devkota, H.P. Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations, 2019, 6(2), 31. https://doi.org/10.3390/separations6020031.

Devkota, H.P.; Paudel, K.R.; Hassan, M.M.; Dirar, A.I.; Das, N.; Adhikari-Dev kota, A.; Echeverría, J.; Rajan Logesh, R.; Jha, N.K.; Singh, S.K.; Hansbro, P.M.; Chan, Y.; Chellappan, D.K.; Dua, K. Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. Appl. Sci., 2021, 11(21), 10205. https://doi.org/10.3390/app112110205.

Joram, A.; Das, A.K.; Mahanta, D. Evaluation of antioxidant and phenolic contents of Zingiber montanum (J.Koenig) Link ex Dietr.: A potential ethnomedicinal plant of Arunachal Pradesh, India. Pleione, 2018, 12, 255–264. https://doi.org/10.26679/Pleione.12.2.2018.

Boeing, J.S.; Barizão, E.O.; Costa e Silva, B.; Montanher, P.F.; Almeida V.D. C.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J., 2014, 8(1), 48. https://doi.org/10.1186/s13065-014-0048-1.

Jitoe, A.; Masuda, T.; Tengah, I.G.P.; Dewa, N.; Suprapta, I.W.; Gara, T.; Nakatanit, N. Antioxidant activity of tropical ginger extracts and analysis of the contained curcuminoids. J. Agric. Food Chem., 1992, 40, 1337–1340. http://dx.doi.org/10.1021/jf00020a008

Vankar, P.S.; Tiwari, V.; Singh, L.W.; Ningombam, S. Antioxidant properties of some exclusive species of Zingiberaceae family of Manipur. E. J. Environ. Agric. Food Chem., 2006. 5(2), 1318–1322.

Masuda, T.; Jitoe. A. Antioxidative and anti-inflammatory compounds from tropical Ginger: Isolation, structure determination and activities of cassumunins A, B and C, new complex curcuminoids from Zingiber cassumunar. J.Agric. Food Chem., 1994, 42(9), 1850–1856. https://doi.org/10.1021/jf00045a004.

Thokchom, D.S.; Sharma, G.J. Free radical scavenging activity of some therapeutic plants and protection of radiation-induced DNA damage by Zingiber montanum extract. J. Herbs Spices Med. Plants., 2012, 18, 1–17. https://doi.org/10.1080/10496475.2011.637608.

Leelapornpisid, P.; Chansakaow, S.; Chaiyasut, C.; Wongwattananukul, N. Antioxidant activity of some volatile oils and absolutes from Thai aromatic plants. Acta Hort., 2008, 786, 61–65. https://doi.org/10.17660/ActaHortic.2008.786.5.

Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med., 2018, 13, 20. https://doi.org/10.1186/s13020-018-0177-x.

Bua-in, S.; Paisooksantivatana, Y. Essential oil and antioxidant activity of Cassumunar ginger (Zingiberaceae: Zingiber montanum (Koenig) Link ex Dietr.) collected from various parts of Thailand. Kasetsart J. (Nat. Sci.), 2009, 43, 467–475.

Iqbal, E.; Salim, K.A.; Lim, L.B.L. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam, J. King Saud Univ. Sci., 2015, 27(3), 224–232. http://dx.doi.org/10.1016/j.jksus.2015.02.003.

Vichit, W.; Saewan, N. Antioxidant activities and cytotoxicity of Thai pigmented rice. Int. J. Pharm. Pharm Sci., 2015, 7(7), 329–334.

Benzie, I. F. F.; Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292.

Shimanuki, H.; Knox, D.A. Diagnosis of Honeybee Disease. United States Department of Agriculture., Agriculture Handbook No. AH–690, 2000, 61.

Rungruang, R.; Ratanathavorn, W.; Boohuad, N.; Selamassakul, O.; Kaisangsri, N. Antioxidant and anti-aging enzyme activities of bioactive compounds isolated from selected Zingiberaceae plants. Agr. Nat. Resour., 2021, 55, 153–160.

Louaileche, H.; Hammiche, D.; Hamoudi, F. Total Phenolic, Flavonoid Contents and in Vitro Antioxidant Activity of Algerian Date Palm Varieties: A Comparative Study. American Journal of Food Science and Health, 2015, 1(3), 63–68.

Tomsone, L.; Kruma, Z.; Galoburda, R. Comparison of different solvents and extraction methods for isolation of phenolic compounds from Horseradish roots (Armoracia rusticana). International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 2012, 6(4), 236–241.

Chew, K.K.; Ng, S.Y.; Thoo, Y.Y.; Khoo, M.Z. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. Int. Food Res. J., 2011, 18(4), 571–578.

Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng., 2007, 81(1), 200–208. http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021.

Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem., 2009, 115(3), 785–788. https://doi.org/10.1016/j.foodchem.2008.12.005.

Nagano, T.; Oyama, Y.; Kajita, N.; Chikahisa, L.; Nakata, M.; Okazaki, E.; Masuda, T. New curcuminoids isolated from Zingiber cassumunar protect cells suffering from oxidative stress: a flow-cytometric study using rat thymocytes and H2O2. Jpn. J. Pharmacol., 1997, 75, 363–370. https://doi.org/10.1254/jjp.75.363.

Aji, N.; Kumala, S.; Mumpuni, E.; Rahmat, D. Antibacterial Activity and Active Fraction of Zingiber officinale Roscoe, Zingiber montanum (J.Koenig) Link ex A., and Zingiber zerumbet (L.) Roscoe ex Sm. Against Propionibacterium acnes. Pharmacogn J., 2022, 14(1), 103–111. https://doi.org/10.5530/pj.2022.14.15

Jena, A.K.; Sahoo, R.K.; Subudhi, E.; Ghosh, G.; Subudhi, B.B.; Nayak, S. Studies on antioxidant, antimicrobial and phytochemical analysis of Zingiber capitatum Roxb. rhizome extracts. Int. J. Integr. Biol., 2011, 11, 127–133.






Research Articles