Phytochemicals, Antioxidant, and Antibacterial Activities of Fresh and Dried Chinese Chive (Allium tuberosum Rottler) Leaf Extracts

Main Article Content

Benyapa Kalasee
Pimonsri Mittraparp-arthorn

Abstract

Chinese chive (Allium tuberosum Rottler) is a nutrient-rich vegetable widely cultivated in south-eastern Asia, including Thailand. The objectives of this study were to assess the phytochemical compounds present in fresh and dried Chinese chives obtained through aqueous extraction and to investigate their biological activities, particularly their antioxidant and antibacterial properties. In this study, fresh and dried Chinese chive leaves were extracted using water to obtain fresh Chinese chive extract (FCCE) and dried chive extract (DCCE). The extracts were characterized for their phytochemical compounds and evaluated for their bioactive properties. Based on GC-MS analyses, 5 major bioactive compounds found in both FCCE and DCCE were 2-methoxy-4-vinyl phenol, dimethyl sulfone, n-hexadecanoic acid, 2-hydroxy-gamma-butyrolactone, and furaneol. The FCCE and DCCE extracts exhibited antioxidant properties with the IC50 values of 7.25 ± 0.14/8.62 ± 0.02 mg/ml and 4.91 ± 0.29/6.66 ± 0.03 mg/ml for FCCE and DCCE determined by DPPH/ABTS assays, respectively. Antibacterial activities of FCCE and DCCE against food pathogenic bacteria demonstrated that both extracts could inhibit Bacillus cereus, Staphylococcus aureus, Salmonella sp., Listeria monocytogenes, Escherichia coli, Vibrio cholerae, and V. parahaemolyticus with the same MIC value (8 mg/ml). Therefore, this study provided a basic knowledge of Chinese chive as a potentially promising source of natural bioactive ingredients for various applications in food technology.

Article Details

Section
Research Articles

References

Alizadeh, B.; Savalan, Ş.; Khawar, K. M.; Özcan, S. Micropropagation of garlic chives (Allium tuberosum Rottl. ex Sprang) using mesocotyl axis. Journal of Animal and Plant Sciences, 2013; 23(2), 543-549.

Bunchauy, P. (2022, November 7). Report of Chinese chives growing in Thailand. Department of Agricultural Extension. http://production.doae.go.th

Park, B. G.; Jung, H. J.; Cho, Y. W.; Lim, H. W.; Lim, C. J. Potentiation of antioxidative and anti-inflammatory properties of cultured wild ginseng root extract through probiotic fermentation. Journal of Animal and Plant Sciences, 2013; 65(3), 457-464. https://doi.org/10.1111/jphp.12004

Oh, M.; Kim, S.-Y.; Park, S.; Kim, K.-N.; Kim, S. H. Phytochemicals in Chinese chive (Allium tuberosum) induce the skeletal muscle cell proliferation via PI3K/Akt/mTOR and smad pathways in C2C12 Cells. International Journal of Molecular Sciences, 2021; 22(5), 2296. https://doi.org/10.3390/ijms22052296

Yabuki, Y.; Mukaida, Y.; Saito, Y.; Oshima, K.; Takahashi, T.; Muroi, E.; Hashimoto, K.; Uda, Y. Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler). Food Chemistry, 2010; 120(2), 343-348. https://doi.org/10.1016/j.foodchem.2009.11.028

Rattanachaikunsopon, P.; Phumkhachorn, P. Diallyl Sulfide Content and Antimicrobial Activity against Food-Borne Pathogenic Bacteria of Chives (Allium schoenoprasum). Bioscience, Biotechnology, and Biochemistry, 2008; 72(11), 2987-2991. https://doi.org/10.1271/bbb.80482

Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology reports, 2019; 24, https://doi.org/10.1016/j.btre.2019.e00370

Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. International journal of molecular sciences, 2007; 8(9), 950-988. https://doi.org/10.3390/i8090950

Gizaw, Z. Public health risks related to food safety issues in the food market: a systematic literature review. Environmental Health and Preventive Medicine, 2019; 24(1), 1-21. https://doi.org/10.1186/s12199-019-0825-5

Asavasanti, S.; Lawthienchai, N.; Tongprasan, T.; Tangduangdee, C.; Yasurin, P. Effect of extraction methods on antibacterial activity and chemical composition of Chinese chives (Allium tuberosum Rottl. ex Spreng) extract. KMUTNB IJAST, 2017; 10, 97-106. http://doi.org/10.14416/j.ijast.2017.05.001

Kudo, H.; Takeuchi, H.; Shimamura, T.; Kadota, Y.; Sugiura, T.; Ukeda, H. In vitro anti-Helicobacter pylori activity of Chinese chive (Allium tuberosum). Food Science and Technology Research, 2011; 17(6), 505-513. http://doi.org/10.3136/fstr.17.505

Hernández, C.; Ascacio-Valdés, J.; De la Garza, H.; Wong-Paz, J.; Aguilar, C. N.; Martínez-Ávila, G. C.; Castro-López, C.; Aguilera-Carbó, A. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L.(Mexican rambutan) husk. Asian Pacific Journal of Tropical Medicine, 2017; 10(12), 1201-1205. https://doi.org/10.1016/j.apjtm.2017.10.030

Arulmozhi, P.; Vijayakumar, S.; Kumar, T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microbial Pathogenesis, 2018; 123, 219-226. https://doi.org/10.1016/j.micpath.2018.07.009

Mohamed, S. A.; Saleh, R. M.; Kabli, S. A.; Al-Garni, S. M. Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric. Toxicology and Applied Pharmacology, 2016; 80(5), 920-928. https://doi.org/10.1080/09168451.2015.1136879

Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 1999; 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Jorgensen, J. H.; Turnidge, J. D. Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, 2015; 1253-1273. https://doi.org/10.1128/9781555817381.ch71

Stéphane, F. F. Y.; Jules, B. K. J.; Batiha, G.; Ali, I.; Bruno, L. N. Extraction of bioactive compounds from medicinal plants and herbs. Natural Medicinal Plants, 2021. http://dx.doi.org/10.5772/intechopen.98602

Jones, W. P., &Kinghorn, A. D. (2005). Extraction of plant secondary metabolites. Natural products isolation, 323-351. https://doi.org/10.1007/978-1-61779-624-1_13

Rubab, M.; Chelliah, R.; Saravanakumar, K.; Barathikannan, K.; Wei, S.; Kim, J.-R.; Yoo, D.; Wang, M.-H.; Oh, D.-H. Bioactive Potential of 2-Methoxy-4-vinylphenol and Benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on Oxidative and Microbiological Stability of Beef Meat. Foods, 2020; 9(5), 568. https://doi.org/10.3390/foods9050568

Gatto, M. A.; Sergio, L.; Ippolito, A.; Di Venere, D. Phenolic extracts from wild edible plants to control postharvest diseases of sweet cherry fruit. Postharvest Biology and Technology, 2016; 120, 180-187. https://doi.org/10.1016/j.postharvbio.2016.06.010

Haminiuk, C. W.; Maciel, G. M.; Plata‐Oviedo, M. S.; Peralta, R. M. Phenolic compounds in fruits–an overview. International Journal of Food Science & Technology, 2012; 47(10), 2023-2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x

Marañón, G.; Muñoz-Escassi, B. Manley, W. García, C. Cayado, P. de la Muela, M. S. Olábarri, B. León, R., &Vara, E. The effect of methyl sulphonyl methane supplementation on biomarkers of oxidative stress in sport horses following jumping exercise. Acta Veterinaria Scandinavica, 2008; 50(1), 45. https://doi.org/10.1186/1751-0147-50-45

Amirshahrokhi, K.; Bohlooli, S.; Chinifroush, M. M. The effect of methylsulfonylmethane on the experimental colitis in the rat. Toxicology and Applied Pharmacology, 2011; 253(3), 197-202. https://doi.org/10.1080/09168451.2015.1136879

Kim, J. H.; Shin, H. J.; Ha, H. L.; Park, Y. H.; Kwon, T. H.; Jung, M. R.; Moon, H. B.; Cho, E. S.; Son, H. Y.; Yu, D. Y. Methylsulfonylmethane suppresses hepatic tumor development through activation of apoptosis. World Journal of Hepatology, 2014; 6(2), 98-106. https://doi.org/10.4254/wjh.v6.i2.98

Kim, L. S.; Axelrod, L. J.; Howard, P.; Buratovich, N.; Waters, R. F. Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthritis Cartilage, 2006; 14(3), 286-294. https://doi.org/10.1016/j.joca.2005.10.003

Poole, T. L.; Benjamin, R.; Genovese, K. J.; Nisbet, D. J. Methylsulfonylmethane exhibits bacteriostatic inhibition of Escherichia coli, and Salmonella enterica Kinshasa, in vitro. Journal of Applied Microbiology, 2019; 127(6), 1677-1685. https://doi.org/10.1111/jam.14446

Krishnan, K. R.; James, F.; Mohan, A. Isolation and characterization of n-hexadecanoic acid from Canthium parviflorum leaves. Journal of Chemical and Pharmaceutical Research, 2016; 8, 614-617. https://doi.org/10.4236/ajps.2017.810171

Sung, W.-S.; Jung, H.-J.; Lee, I.-S.; Kim, H.-S.; Lee, D.-G. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. Journal of Microbiology and Biotechnology, 2006; 16(3), 349-354.

Čechovská, L.; Cejpek, K.; Konečný, M.; Velíšek, J. On the role of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-(4 H)-pyran-4-one in antioxidant capacity of prunes. European Food Research and Technology, 2011; 233, 367-376. https://doi.org/10.1007/s00217-011-1527-4

Somjai, C.; Siriwoharn, T.; Kulprachakarn, K.; Chaipoot, S.; Phongphisutthinant, R.; Wiriyacharee, P. Utilization of Maillard reaction in moist-dry-heating system to enhance physicochemical and antioxidative properties of dried whole longan fruit. Heliyon, 2021; 7(5), 07094. https://doi.org/10.1016/j.heliyon.2021.e07094

Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules, 2014; 19(12), 20034-20053. https://doi.org/10.3390/molecules191220034

Lachman, J.; Pronek, D.; Hejtmánková, A.; Dudjak, J.; Pivec, V.; Faitová, K. Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Horticultural Science, 2003; 30(4), 142-147. http://dx.doi.org/10.17221/3876-HORTSCI

Štajner, D.; Čanadanović‐Brunet, J.; Pavlović, A. Allium schoenoprasum L., as a natural antioxidant. Phytotherapy Research, 2004; 18(7), 522-524. https://doi.org/10.1002/ptr.1472

Parvu, M.; Toiu, A.; Vlase, L.; Alina Parvu, E. Determination of some polyphenolic compounds from Allium species by HPLC-UV-MS. Natural Product Research, 2010; 24(14), 1318-1324. https://doi.org/10.1080/14786410903309484

Sultana, F.; Mohsin, M.; Sah, A. In-vitro Antioxidant and Antimicrobial Activity of Allium tuberosum Rottler. ex Spreng. International Journal of Advanced Research in Biological Sciences, 2015; 2(12), 178-187. http://s-o-i.org/1.15/ijarbs-2-12-20

Nantarat, N.; Tragoolpua, Y.; Gunama, P. Antibacterial activity of the Mucus Extract from the Giant African Snail (Lissachatina fulica) and Golden Apple Snail (Pomacea canaliculata) against pathogenic bacteria causing skin diseases. Tropical Natural History, 2019; 19(2), 103-112. https://doi.org/704761-1-10-20190930

Gao, Q.; Li, X.-B.; Sun, J.; Xia, E.-D.; Tang, F.; Cao, H.-Q.; Xun, H. Isolation and identification of new chemical constituents from Chinese chive (Allium tuberosum) and toxicological evaluation of raw and cooked Chinese chive. Food and Chemical Toxicology, 2018; 112, 400-411. https://doi.org/10.1016/j.fct.2017.02.011

Mau, J.-L.; Chen, C.-P.; Hsieh, P.-C. Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. Journal of Agricultural and Food Chemistry, 2001; 49(1), 183-188. https://doi.org/10.1021/jf000263c