Influence of Inhibitors from Microwave Pretreatment of Oil Palm Frond Pulping (OPFP) on Bioethanol Production
Main Article Content
Abstract
This research aims to analyze the influence of inhibitors from microwave pretreatment of oil palm frond pulping (OPFP) on the efficiency of bioethanol fermentation by S.cerevisiae in the simultaneous saccharification and fermentation (SSF) processes. OPFPs were achieved at different ages: 3-4, 4-7, 7-10, 10-20, and 20-25 years old. OPFP was pretreated with a microwave and sulfuric acid (MW/SF), microwave and hydrogen sulfide (MW/HP), and microwave and water (MW/W). The results showed that the main inhibitors formed during the pretreatment process of OPFP were acetic acid, furfural, 5-hydroxymethylfurfural (HMF), furfural, formic acid, and phenol. The pretreatment of OPFP with MW/W had the lowest concentrations of inhibitors compared to the other pretreatment methods. The highest bioethanol yields at all ages of OPFP were in the range of 0.41-0.42 g-bioethanol/g-glucose, corresponding to more than 80% fermentation efficiency. At these conditions, the concentrations of the acetic acid were 0.09-0.19 g/l, HMF =0, furfural =0, formic acid 0.05-0.28 g/l, and phenol 0.22-0.47 g/l. The MW/W was the suitable pretreatment of OPFP for bioethanol production due to the lowest to generate the inhibitor and high ethanol production yield.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Shafiel, M.; Kabir, M.M.; Zilouei, H.; Horvath, I.H.; Karimi, K. Techno-economical study of biogas production improved by steam explosion pretreatment. Bioresource Technology. 2013, 148, 53-60. https://doi.org/10.1016/j.biortech.2013.08.111
Hoang, A.T.; Nižetić, S.; Ong, H.C. c, Mofijur, M.; Ahmed, S.F.; B. Ashok, B.; Bui, V.T.V.; Chau, Q.M. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere. 2021, 281, 130878. https://doi.org/10.1016/j.chemosphere.2021.130878
Taherzadeh, M.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences. 2008, 9, 1621-1651. https://doi.org/10.3390/ijms9091621
Yang, B.; Wyman, C.E. Pretreatment: the key to unlocking low-cost cellulosic ethanol Biofuels, Bioproducts and Biorefining. 2008, 2, 26-40. https://doi.org/10.1002/bbb.49
Bellido, C.; Bolado, S.; Coca, M.; Lucas, S.; Gonzalez-Benito, G.; Garcia-Cubero, M.T. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichiastipitis. Bioresource Technology. 2011, 102, 10868-10874. https://doi.org/10.1016/j.biortech.2011.08.128
Jönsson, L.J.; Matin, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology. 2016, 199, 103-112. https://doi.org/10.1016/j.biortech.2015.10.009
Hu, F.; Ragauskas, A. Pretreatment and lignocellulosic chemistry. BioEnergy Research. 2012, 5, 1043-1066. https://doi.org/10.1007/s12155-012-9208-0
Rezania, S.; Din, M.F.M.; Mohamad, S.E.; Sohaili, J.; Taib, S.M.; Yusof, M.B.M.; Kamyab, H.; Darajeh, N., Amimul, A. Review on pretreatment methods and ethanol production from cellulosic water hyacinth. Bioresources. 2017, 12(1), 2108-2124. https://doi.org/10.15376/biores.12.1.Rezania
Karthikeyan, O.P.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.C.; Carrere, H. Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology. 2018, 249, 1025-1039. https://doi.org/10.1016/j.biortech.2017.09.105
Thangavelu, S.K.; Ahmed, A.S.; Ani, F.N. Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide. Applied Energy. 2014, 128, 277-283. https://doi.org/10.1016/j.apenergy.2014.04.076
William, M.B.; Reese, D. Colorimetric determination of ethyl alcohol. Analytical Chemistry. 1950, 22, 1556. https://doi.org/10.1021/ac60048a025
Singleton, V.L.; Orthofer, R.; Lamuela-Raventors, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 1990, 299, 152-158. https://doi.org/10.1016/S0076-6879(99)99017-1
Toquero, C.; Bolado, S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw, Influence of inhibitors and washing. Bioresource Technology. 2014, 157, 68-76. https://doi.org/10.1016/j.biortech.2014.01.090
Larsson, S.; Palmqvist, E.; Hahn-Hägerdal, B.; Tengborg, C.; Stenberg, K.; Zacchi, G.; Nilvebrant, N.O.; The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial. 1999, 24, 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
Martin, C.; Jonsson, L.J. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocelluloses derived fermentation inhibitors. Enzyme and Microbial Technology. 2003, 32, 386-395. https://doi.org/10.1016/S0141-0229(02)00310-1
Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews. 2014, 36, 91-106. https://doi.org/10.1016/j.rser.2014.04.047
Palmqvist, E.; Hahn-Hagerdal, B. Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification, Bioresour. Technol. 2000, 74(1), 17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
Talebnia, F. Optimization study of citrus wastes saccharification by dilute acid hydrolysis. BioResources. 2008, 3(1), 108-122. https://doi.org/10.15376/biores.3.1.108-122
Guo, G.L.; Chen, W.H.; Chen, W.H.; Men, L.C.; Hwang, W.S. Characterization of dilute acid pretreatment of silver grass for ethanol production. Bioresource Technology. 2008, 99, 6046-6053. https://doi.org/10.1016/j.biortech.2007.12.047
Diaz, M.J.; Ruiz, E.; Romero, I.; Cara, C.; Moya, M.; Castro, E. Inhibition of Pichiastipitis fermentation of hydrolysates from olive tree cuttings. World Journal of Microbiology and Biotechnology. 2009, 25, 891-899. https://doi.org/10.1007/s11274-009-9966-9
Klinke, H.B.; Thomsen, A.B.; Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology. 2004, 66(1), 10-26. https://doi.org/10.1007/s00253-004-1642-2
Diaz, A.; Le Toulle, J.; Blandino, A.; De Ory, I.; Caro, I. Pretreatment of rice hills with alkaline peroxide to enhance enzyme hydrolysis for ethanol production. Chemical Engineering Transactions. 2013, 32, 949-954.
Agbor, V. B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances. 2011, 29, 675-685. https://doi.org/10.1016/j.biotechadv.2011.05.005
Jonsson, L.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocelluloses: inhibitors and detoxification. Biotechnology for Biofuels. 2013, 6(16), 1-10. https://doi.org/10.1186/1754-6834-6-16
Jung, Y.H.; Kim, I.J.; Kim, H.K.; Kim, K.H. Dilute acid pretreatment of lignocelluloses for whole slurry ethanol. Bioresource Technology. 2013, 132, 109-114. https://doi.org/10.1016/j.biortech.2012.12.151
Delgenes, J.P.; Moletta, R.; Navarro, J.M. Effects of lignocelluloses degradation products on ethanol fermentation of glucose and xylose by S. cerevisaie, Z. mobilis, Pichiastipitis and Candida shehatae. Enzyme and Microbial Technology. 1996, 19, 220. https://doi.org/10.1016/0141-0229(95)00237-5
Zheng, Y.; Pan, Z.; Zhang, R. Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering. 2009, 2, 51-68.
Canettieri, E.V.; Rocha, G.J.M.; Carvalho, J.A.; Silva Jr.; J.B.A. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology. 2007, 98, 422-8. https://doi.org/10.1016/j.biortech.2005.12.012
Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology. 2009, 100, 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
Kont, R. Strong cellulose inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels. 2013, 6, 135. https://doi.org/10.1186/1754-6834-6-135
Binod, P.; Satyanagalakshmi, K.; Sindhu, R.; Janu, K.U.; Sukumaran, R.K.; Pandey, A. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy. 2012, 37, 109-116. https://doi.org/10.1016/j.renene.2011.06.007
Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Journal of Renewable Energy. 2012, 37, 19-27. https://doi.org/10.1016/j.renene.2011.06.045
Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology. 2009, 100, 2562-2568. https://doi.org/10.1016/j.biortech.2008.11.011
Kadar, Z.S.; Szengyel, Z.S.; Réczey, K. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products. 2004, 20, 103-110. https://doi.org/10.1016/j.indcrop.2003.12.015
Tomas-Pejo, E.; Oliva, J.M.; Ballesteros, M.; Olsson, L. Comparison of SHF and SSF process from stream-exploded wheat straw for ethanol production by xylose-fermentation Saccharomyces cerevisiae strains. Biotechnology and Bioengineering. 2008, 100, 1122-1131. https://doi.org/10.1002/bit.21849