Biogas and Biohythane Production from Anaerobic Co-digestion of Canned Sardine Wastewater with Glycerol Waste

Main Article Content

Tussanee Srimachai
Tsuyoshi Imai
Kiattisak Rattanadilok Na Phuket

Abstract

A biochemical methane potential (BMP) test investigated the effect of glycerol waste (GW) concentration on anaerobic co-digestion with canned sardine wastewater (CSW). They were studied using the single-stage process at mesophilic (P1) and thermophilic (P2) conditions and two-stage mesophilic (P3) processes. The P3 process has provided the most significant potential for improving biogas production in the sardine canning industry. Using 4% GW (v/v), the optimal hydrogen and methane concentrations at P3 are 43.00 ml H2/g CODr and 303.69 ml CH4/g CODr, respectively. The P3 process was 11.33 m3 biohytane/m3 mixed substrate, and the biohytane composition contained 43.11% CH4, 21.45% H2, and 35.43% CO2. The modified Gompertz model could simulate satisfactory hydrogen and methane yields, corresponding to high regression coefficients (R2>0.90). Hydrogen-producing bacteria in the H2 batch reactor were dominated by Micrococcus sp. and Desulfovibrio sp., while Methanosaeta sp., Methanoculleus sp., and Methanosarcina sp. are the major methanogens in the CH4 batch reactor. A two-stage process of co-fermenting CSW and GW could be a potential option for simultaneous biofuel recovery and waste treatment.

Article Details

Section
Research Articles

References

Intanoo, P.; Chaimongkol, P.; Chavadej, S. Hydrogen and methane production from cassava wastewater using two-stage up-flow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int J Hydrogen Energy. 2016, 41, 6107-6114. https://doi.org/10.1016/j.ijhydene.2015.10.125

Zhang, Q.; Hu, J.; Lee, D.J. Biogas from anaerobic digestion process: Research updates. Renew Energ, 2016, 98, 108-119. https://doi.org/10.1016/j.renene.2016.02.029

Ward. A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008, 99, 7928-7940. https://doi.org/10.1016/j.biortech.2008.02.044

Chowdhury, P.; Viraraghavan, T.; Srinivasan, A. Biological treatment processes for fish processing wastewater: A review. Bioresour Technol. 2010, 10, 439-449. https://doi.org/10.1016/j.biortech.2009.08.065

Pagliaccia, P.; Gallipoli, A.; Gianico, A.; Montecchio, D.; Braguglia, C.M. Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. Int J Hydrogen Energy. 2016, 41, 905-915. https://doi.org/10.1016/j.ijhydene.2015.10.061

Da Silva, C.; AstalSiles, S.; Peces, M.; Campos, J.L.; Guerrero, L. Biochemical methane potential (BMP) test: reducing test time by early parameter estimation. Bioresour Technol. 2018, 71, 19-24. https://doi.org/10.1016/j.wasman.2017.10.009

Palenzuela-Rollon, A. Anaerobic digestion of fish processing wastewater with special emphasis on hydrolysis of suspended solids. London: Taylor and Francis, 1999.

Chen. Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour Technol. 2008, 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057

Yenigun, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901-911. https://doi.org/10.1016/j.procbio.2013.04.012

Rivero, M.; Solera, R.; Perez, M. Anaerobic mesophilic co-digestion of sewage sludge with glycerol: Enhanced biohydrogen production. Int J Hydrogen Energy. 2014, 39, 2481-2488. https://doi.org/10.1016/j.ijhydene.2013.12.006

Vasquez, J.; Nakasaki, K. Effects of shock loading versus stepwise acclimation on microbial consortia during the anaerobic digestion of glycerol. Biomass and Bioenerg. 2016, 86, 129-135. https://doi.org/10.1016/j.biombioe.2016.02.001

Kalia, V.C.; Prakash, J.; Houl, S. Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol. 2016, 53(2), 113-125. https://doi.org/10.1007/s12088-016-0583-7

O-Thong, S.; Hniman, A.; Prasertsan, P.; Imai, T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrogen Energy. 2011, 36, 3409-3416. https://doi.org/10.1016/j.ijhydene.2010.12.053

Akyol, C.; Aydin, S.; Ince, O.; Ince, B. A comprehensive microbial insight into single-stage and two-stage anaerobic digestion of oxytetracycline-medicated cattle manure. Chem. Eng. J. 2016, 303, 675-684. https://doi.org/10.1016/j.cej.2016.06.006

Mamimin, C.; Singkhlala, A.; Kongjan, P.; Suraraksa, B.; Prasertsan, P.; Imai, T.; O-thong, S. Two-stage thermophilic fermentation and mesophilic methanogen process for biohydrogen production from palm oil mill effluent. Int J Hydrogen Energy. 2015, 40, 6319-6328. https://doi.org/10.1016/j.ijhydene.2015.03.068

Kafle, G.K.; Kim, S.H.; Sung, K.I. Ensiling of fish industry waste for biogas production: A lab-scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol. 2013, 127, 326-336. https://doi.org/10.1016/j.biortech.2012.09.032

Konjan, P.; O-Thong, S.; Angelidaki, I. Performance and microbial community analysis of two-stage process with extreme thermophiliclic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol. 2011, 102, 4028-4035. https://doi.org/10.1016/j.biortech.2010.12.009

Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; David, J.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389

APHA. Standard methods for the examination of water and wastewater. 21th ed. Washington DC: USA, 2012.

Tian, H.L.; Duan, N.; Lin, C.; Li, X.; Zhong, M.Z. Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios. J Biosci Bioeng. 2015, 1205, 1-57. https://doi.org/10.1016/j.jbiosc.2014.11.017

Angelidaki, I.; Ellegaard, L. Co-digestion of manure and organic wastes in centralized biogas plants, status and future trends. Appl Biochem Biotech. 2003, 109, 95-105. https://doi.org/10.1385/ABAB:109:1-3:95

Switzenbaum, Michael, S.; Eugenio, G.G.; Robert, F.H. Monitoring of the anaerobic methane fermentation process. Enzyme and Microbial Technology. 1990, 12(10), 722-730. https://doi.org/10.1016/0141-0229(90)90142-D

Franke-Whittle, I.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on mechanic communities. Waste Manage, 2014, 34, 2080-2089. https://doi.org/10.1016/j.wasman.2014.07.020

Sreethawong, T.; Chatsiriwatana, S.; Rangsuvijit, P.; Chavadej, S. Hydrogen production from cassava wastewater using anaerobic sequencing batch reactor: Effects of operational parameter, COD: N ratio, and organic acid composition. Int J Hydrogen Energy. 2010, 35, 4092-4102. https://doi.org/10.1016/j.ijhydene.2010.02.030

Luo, G.L.; Xie, L.; Zou, Z.; Zhou, Q.; Wang, J.Y. Fermentation hydrogen production from cassava stikkage by mixed anaerobic microflora: Effect of temperature and pH. Appl Energ. 2010, 87, 3710-3717. https://doi.org/10.1016/j.apenergy.2010.07.004

Khongkliang, P.; Kongjan, P.; O-Thong, S. Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energ Procedia. 2015, 79, 827-832. https://doi.org/10.1016/j.egypro.2015.11.573