Efficient Conversion of Oil Palm Trunk and Frond to Bioethanol and Biogas Using Two-Stage Steam Explosion Pretreatment

Main Article Content

Tussanee Srimachai
Chaiyoot Meengam
Prawit Kongjan
Kiattisak Rattanadilok Na Phuket

Abstract

Bioethanol and biogas production from oil palm trunk (OPT) and oil palm frond (OPF) investigated within a biorefinery concept. Firstly, bioethanol production from OPT and OPF pretreated two-stage steam explosion by comparing with enzyme hydrolysis and without enzyme hydrolysis in the SSF process, which used S. cerevisiae in fermentation. The amount of bioethanol increased rapidly, which was stable when the fermentation process entered 96 hrs, resulting in the highest amount of bioethanol produced from OPF and OPT equal to 0.31 and 0.40 g ethanol/g glucose of bioethanol yield, which was about 24.96% and 25.99% higher than the non-enzymatic fermentation of OPF and OPT. The total stillage from OPT and OPF distillation produced a methane yield of 164.38 ml/CH4 g COD at 30 days of HRT and an organic loading rate (OLR) of 12.45 g COD/L-day. Biofuels in the biorefinery concept of OPF/OPT material at 1,000 kg produced bioethanol, biogas, and solid residue as 49 L at 95% bioethanol, 7,116 L at 63.05% of methane composition, and 13 kilograms of solid residue.

Article Details

Section
Research Articles

References

Shafiel, M.; Kabir, M.M.; Zilouei, H.; Horvath, I.H.; Karimi, K. Techno-economical study of biogas production improved by steam explosion pretreatment. Bioresource Technology. 2013; 148, 53–60. https://doi.org/10.1016/j.biortech.2013.08.111

Zahari, M.A.K.M.; Zakaria, M.R.; Ariffin, H.H.; Mokhtar, M.N.; Salihon, J.; Shirai, Y.; Hassan, M.A. Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresource Technology. 2012; 110, 566–571. https://doi.org/10.1016/j.biortech.2012.01.119

Zhang, Y. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology. 2008; 35(5), 367–375. https://doi.org/10.1007/s10295-007-0293-6

Thomsen, M. Complex media from processing of agricultural crops for microbial fermentation. Applied Microbiology and Biotechnology. 2005; 68(5), 598–606. https://doi.org/10.1007/s00253-005-0056-0

Sheehan, J.; Aden, A.; Paustian, K.; Killian, K.; Brenner, J.; Walsh, M.; Nelson, R. Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology. 2003; 7 (3–4), 117–146. https://doi.org/10.1162/108819803323059433

Taherzadeh, M.J; Karimi, K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresource Technology. 2007; 2, 707–738. https://doi.org/10.15376/biores.2.4.707-738

Bellido, C.; Bolado, S.; Coca, M.; Lucas, S.; Gonzalez-Benito, G.; Garcia-Cubero, M.T. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichiastipitis. Bioresource Technology. 2011; 102, 10868–10874. https://doi.org/10.1016/j.biortech.2011.08.128

Jönsson, L.J.; Matin, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology. 2016; 199, 103-112. https://doi.org/10.1016/j.biortech.2015.10.009

Hu, F.; Ragauskas, A. Pretreatment and lignocellulosic chemistry.BioEnergy Research. 2012; 5, 1043–1066. https://doi.org/10.1007/s12155-012-9208-0

Van Soest, P.J. Use of detergent in the analysis of fibrous feeds. A rapid method for the determination of fibre and lignin. Journal of the Association of Official Analytical Chemists. 1963; 46(5), 829–835. https://doi.org/10.1093/jaoac/46.5.829

APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington DC: USA. 2012.

William, M.B.; Reese, D. Colorimetric determination of ethyl alcohol. Analytical Chemistry. 1950; 22, 1556. https://doi.org/10.1021/ac60048a025

O-Thong, S.; Hniman, A.; Prasertsan, P.; Imai, T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrogen Energy. 2011; 36, 3409-3416. https://doi.org/10.1016/j.ijhydene.2010.12.053

Jacque, N.; Maniet, G.; Vanderghem†, C.; Delvigne, F.; Richel, A. Application of steam explosion as pretreatment on lignocellulosic material: A Review. Industrial & Engineering Chemistry Research. 2015; 54(10), 2593-2599. https://doi.org/10.1021/ie503151g

Rabelo, S.C.; Carrere, H.; Filho, R.M.; Costa, A.C. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology. 2011; 102, 7887–7895. https://doi.org/10.1016/j.biortech.2011.05.081

Zuo, Z.; Tian, S.; Chen, Z.; Li, J.I.; Yang, X. Soaking pretreatment of corn stover for bioethanol production followed by anaerobic digestion process. Apply Biochemistry & Biotechnology. 2012; 167, 2088–2102. https://doi.org/10.1007/s12010-012-9751-3

Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Prawit Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009; 100, 2562–2568. https://doi.org/10.1016/j.biortech.2008.11.011

Ward. A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008; 99, 7928-7940. https://doi.org/10.1016/j.biortech.2008.02.044

Franke-Whittle, I.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on mechanic communities. Waste Manage, 2014; 34, 2080-2089. https://doi.org/10.1016/j.wasman.2014.07.020