Effects of Ultrasonic Stimulation and Light Intensity on the Growth Rate and Biomass Productivity of Chlorella ellipsoidea in a Closed-Batch Cultivation System

Main Article Content

Siriluk Sintupachee
Sudarat Theerapisit
Somrak Rodjaroen

Abstract

Microalgae exhibit high nutritional value as animal feed in aquatic animal nurseries. Therefore, approaches to enhance biomass productivity are of great economic significance. This study aimed to evaluate the effect of ultrasonic wave stimulation on the specific growth rate and biomass yield of Chlorella ellipsoidea strain TISTR 8260. C. ellipsoidea stimulated by ultrasonic waves at 50 Hz for 1, 5, and 10 min were cultivated in a closed-batch cultivation system with varying light intensities. Data revealed that stimulation for 1 min and rearing at 71.43 μmol m−2 s−1 resulted in the highest biomass productivity and specific growth rates, with averages of 0.89±0.008 g/L/day and 0.59±0.009 per day, respectively. The findings of this study emphasize the usefulness of ultrasonic waves in enhancing the biomass productivity of microalgae.

Article Details

Section
Research Articles

References

Zhang, H.; Qing-Kai, F.; Fan, C. et al. Effect of pulsed powder ultrasound on plasma morphology and its changing mechanism. Int J Adv Manuf Technol, 2021; 116, 1225–1232. https://doi.org/10.1007/s00170-021-07540-2.

Valero, D.; Zhang, G.; Bung, D.B.; Chanson H. On the estimation of free-surface turbulence using ultrasonic sensors. Flow Measurement and Instrumentation, 2018; 60, 171-184. https://doi.org/10.1016/ j.flowmeasinst.2018.02.009.

Qifa, Z.; Sienting, L.; Dawei, W.; Kirk S. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Progress in Materials Science, 2011; 56(2), 139-174. https://doi.org/10.1016 /j.pmatsci.2010.09.001.

Bulliard-Sauret, O.; Berindei, J.; Ferrouillat, S.; Vignal, L.; Memponteil, A.; Poncet, C.; Leveque, J.M.; Gondrexon N. Heat transfer intensification by low or high frequency ultrasound: Thermal and hydrodynamic phenomenological analysis. Experimental Thermal and Fluid Science, 2019; 104, 258-271, https://doi.org/10.1016/j.expthermflusci.2019.03.003

Xiong, J.; Wang, Y.; Ma, G-M.; Zhang, Q.; Zheng S-S. Field Applications of Ultra High Frequency, Techniques for Defect Detection in GIS. Sensors, 2018; 18(8), 2425 pp.https://doi.org/10.3390/s18082425.

Deffieux, T.; Konofagou, E. E. Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening. in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010; 57(12), 2637-2653. https://doi: 10.1109/TUFFC.2010.1738.

Shahram, N.; Seyed, H.H.; Meysam, M.R. CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble. Chemical Engineering Research and Design, 2014; 92(1), 166-173. https://doi.org/10.1016/j.cherd.2013.07.002

Muthupandian, A. The characterization of acoustic cavitation bubbles – An overview. Ultrasonics Sonochemistry, 2011; 18(4), 864-872, https://doi.org/10.1016/j.ultsonch.2010.11.016.

Khalesi, B.; Sohani, B.; Ghavami, N.; Ghavami, M.; Dudley, S.; Tiberi G. A Phantom Investigation to Quantify Huygens Principle Based Microwave Imaging for Bone Lesion Detection. Electronics, 2019; 8(12), 1505. https://doi.org/10.3390/electronics8121505.

Glacio, S.; Araujo, L.; Matos, J.B.L.; Jader, O.; Fernandes, S.; Cartaxo J.M.; Luciana, R.B.; Gonçalves, F.; Fernandes, A.N.; Wladimir, R.L. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method, Ultrasonics Sonochemistry, 2013; 20(1), 95-98. https://doi.org/10.1016/j.ultsonch.2012.07.027.

Mubarak, M.; Shaija, A.; Suchithra, T.V. A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 2015; 7, 117-123. https://doi.org/10.1016/j.algal.2014.10.008.

Peng, Y.; Zhang, Z.; Kong, Y., Li, Y.; Zhou, Y.; Shi, X.; Shi, X. Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter, Ultrasonics Sonochemistry, 2020; 63, 1350-4177, https://doi.org/10.1016/j.ultsonch.2019.104909.

Xiaoying, L.; Shirong, G.; Taotao, C.; Zhigang, X.; Tezuka, T. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African journal of biotechnology, 2012; 11 (Suppl. 22), 6169-6177)

Bialevich, V.; Zachleder, V.; Bišová, K. The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species. Cells 2022; 11, 1293. https://doi.org/10.3390/cells11081293.

Tran-Nguyen, Q. A.; Tran, T. T. V.; Trinh-Dang, M. Effects of Light on the Growth and β-carotene Accumulation in the Green Algae Dunaliella salina. Asian Journal of Biology, 2023; 18(1), 1–10. https://doi.org/10.9734/ajob/2023/v18i1332

Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F.J.; Grimi, N., Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev E. Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresource Technology, 2015; 198, 262-267. https://doi.org/10.1016/ j.biortech.2015.09.020.

Ulker, D.; Keris-Sen, U.; Sen, G.; Soydemir, M.; Gurol, D. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource Technology, 2014; 152, 407-413, https://doi.org/10.1016/j.biortech.2013.11.018.

Seyfabadi, J.; Ramezanpour, Z.; Amini Khoeyi, Z. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 2011; 23: 721–726. https://doi.org /10.1007/s10811-010-9569-8.

Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 2007; 103(3): 891-899. https://doi.org/10.1016/j.

Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: a survey on methods and metrics. Electronics, 2019; 8, 832. https://doi.org/10.3390/electronics8080832.

Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella Pyrenoidosa in response to different CO2 levels. Bioresource Technol, 2011; 102, 3071-3076.

Xiaotong, Z.; Kaiwei, X.; Wenjuan, C.; Yanhui, Q.; Yanpeng, L. 2021. Rapid extraction of lipid from wet microalgae biomass by a novel buoyant beads and ultrasound assisted solvent extractionmethod. Algal Research, 2021; 58, https://doi.org/10.1016/j.algal.2021.102431

Ramachandran, S.; Aran I. Low power ultrasound treatment for the enhanced production of microalgae biomass and lipid content. Biocatalysis and Agricultural Biotechnology, 2019; 20. https://doi.org/10.1016/ j.bcab.2019.101230.

Zhen, X.; Haiyan, P.; Lijie, Z.; Zhigang, Y.; Changliang, N.; Qingjie, H.; Ze Y. Accelerating lipid production in freshwater alga Chlorella sorokiniana SDEC-18 by seawater and ultrasound during the stationary phase. Renewable Energy, 2020; 161, 448-456. https://doi.org/10.1016/j.renene. 2020.07.038.

Qun, W.; Jinjie, Y.; Ruge, C.; Shangru, Y.; Yonghe, T.; Xiangmeng, M. Low-frequency ultrasound and nitrogen limitation induced enhancement in biomass production and lipid accumulation of Tetradesmus obliquus FACHB-12. Bioresource Technology, 2022; 358. https://doi.org/10.1016/j.biortech.2022.127387.

Pereira, R.N.; Jaeschke, D.P.; Mercali, G. et al. Impact of ultrasound and electric fields on microalgae growth: a comprehensive review. Braz. J. Chem. Eng. 2023; 40, 607–622. https://doi.org/10.1007/s43153-022-00281-z

Xu, L.; Wang, SK.; Wang, F. et al. Improved Biomass and Hydrocarbon Productivity of Botryococcus braunii by Periodic Ultrasound Stimulation. Bioenerg Res, 2019; 7, 986–992. https://doi.org/10.1007/ s12155-014-9441-9.

Dianursanti, S.A.R.; Maeda, Y.; Yoshino, T.; Tanaka, T. The Effects of Solvents and Solid-to-Solvent Ratios on Ultrasound-Assisted Extraction of Carotenoids from Chlorella vulgaris. International Journal of Technology, 2020; 11(5), 941-950. https://doi.org/10.14716/ijtech.v11i5.4331.