Impacts of Climate Change and Regional Variations on Future Rainfall Patterns in Thailand by Downscaling Method

Main Article Content

Supanee Maichandee
Prachaya Namwong
Onuma Methakeson

Abstract

In this study, we investigated the impacts of climate change on rainfall patterns in Thailand using the downscaling method. The simulation data was obtained from the Weather Research and Forecasting (WRF) model, using the Community Earth System Model (CCSM) as a boundary condition. The characteristics of rainfall were analyzed in terms of the total annual rainfall, rainfall intensity, the number of days with heavy rain, and the total amount of rainfall in each season in the future compared to the base periods. It was found that the simulation of the climate in upper Thailand was consistent with the reanalysis values, with TCC ranging from 0.6 to 0.9. The simulated annual rainfall amount is underestimated throughout the country. There are indications that rainfall will increase in average and extreme terms in some regions, including the eastern region of the Northeast, the western side of the North, and the upper part of the West. In the southern part of the country, the overall rainfall indices are expected to decrease with low confidence in almost the entire region.

Article Details

Section
Research Articles

References

Dore, M. H. Climate change and changes in global precipitation patterns: what do we know?. Environment international. 2005, 31(8), 1167-1181. https://doi.org/10.1016/j.envint.2005.03.004

Pachauri, R. K.; Allen, M. R.; Barros, V. R.; Broome, J.; Cramer, W.; Christ, R.; ... & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). Ipcc. 2014.

Adedeji, O. Global climate change. Journal of Geoscience and Environment Protection. 2014, 2(2), 114. https://doi.org/10.4236/gep.2014.22016

Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D. W.; Medina-Elizade, M. Global temperature change. Proceedings of the National Academy of Sciences. 2006, 103(39), 14288-14293. https://doi.org/10.1073/pnas.0606291103

IPCC, I. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change.

Lindsey, R.; Dahlman, L. Climate change: Global temperature. Climate. Gov. 2020, 16.

Sentian, J., Payus, C. M., Herman, F., & Kong, V. W. Y. (2022). Climate change scenarios over Southeast Asia. APN Science Bulletin. https://doi.org/10.30852/sb.2022.1927

Trenberth, K.E. Changes in precipitation with climate change. Climate research. 2011, 47(1-2),123-138. https://doi.org/10.3354/cr00953

Nurse, L. A.; McLean, R. F.; Agard, J.; Briguglio, L. P.; Duvat-Magnan, V.; Pelesikoti, N.; ... & Webb, A. Small islands Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed VR Barros et al. 2014.

Masson-Delmotte, V. P.; Zhai, P.; Pirani, S. L.; Connors, C.; Péan, S.; Berger, N.; ... & Scheel Monteiro, P. M. Ipcc, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. 2021.

Chong-Hai, X. U.; Ying, X. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters. 2012, 5(6), 527-533. https://doi.org/10.1080/16742834.2012.11447042

Oh, S. G.; Park, J. H.; Lee, S. H.; Suh, M. S. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. Journal of Geophysical Research: Atmospheres. 2014, 119(6), 2913-2927. https://doi.org/10.1002/2013JD020693

Chen, H.; Sun, J. Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorology and Atmospheric Physics. 2013, 121, 55-77. https://doi.org/10.1007/s00703-013-0257-5

Chinvanno, S.; Luang-aram, V.; Sangmanee, C.; Thanakitmetavut, J. Future Climate Projection for Mainland Southeast Asia Countries: Climate Change Scenario of 21st Century. APN, 36. 2011. https://doi.org/10.30852/sb.2011.35

Maijandee, S.; Kreasuwun, J.; Komonjinda, S.; Promnopas, W. Effects of climate change on future extreme rainfall indices over Thailand. Global NEST Journal. 2014, 16(2), 306-315. https://doi.org/10.30955/gnj.001227

Amnuaylojaroen, T. Projection of the precipitation extremes in Thailand under climate change scenario RCP8. 5. Frontiers in Environmental Science. 2021, 9, 657810. https://doi.org/10.3389/fenvs.2021.657810

Manomaiphiboon, K.; Octaviani, M.; Torsri, K.; Towprayoon, S. Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios. Climate research. 2013, 58(2), 97-115. https://doi.org/10.3354/cr01188

Tangang, F.; Santisirisomboon, J.; Juneng, L.; Salimun, E.; Chung, J.; Supari, S.; ... & Yang, H. Projected future changes in mean precipitation over Thailand based on multi‐model regional climate simulations of CORDEX Southeast Asia. International Journal of Climatology. 2019, 39(14), 5413-5436. https://doi.org/10.1002/joc.6163

Masud, M. B.; Soni, P.; Shrestha, S.; Tripathi, N. K. Changes in climate extremes over North Thailand, 1960-2099. Journal of Climatology. 2016. https://doi.org/10.1155/2016/4289454

Gent, P. R.; Danabasoglu, G.; Donner, L. J.; Holland, M. M.; Hunke, E. C.; Jayne, S. R.; ... & Zhang, M. The community climate system model version 4. Journal of climate. 2011, 24(19) , 4973-4991. https://doi.org/10.1175/2011JCLI4083.1

Kain, J. S.; Fritsch, J. M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The representation of cumulus convection in numerical models (pp. 165-170). Boston, MA: American Meteorological Society. 1993. https://doi.org/10.1007/978-1-935704-13-3_16

Kain, J. S. The Kain-Fritsch convective parameterization: an update. Journal of applied meteorology. 2004, 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

Jiménez, P. A.; Dudhia, J.; González-Rouco, J. F.; Navarro, J.; Montávez, J. P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Monthly weather review. 2012, 140(3), 898-918. https://doi.org/10.1175/MWR-D-11-00056.1

Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review. 2001, 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Hong, S. Y.; Dudhia, J.; Chen, S. H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly weather review. 2004, 132(1), 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

Hong, S. Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review. 2006, 134(9), 2318-2341. https://doi.org/10.1175/MWR3199.1

Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave (Paper 97JD00237). Journal of geophysical research-all series. 1997, 102, 16-663. https://doi.org/10.1029/97JD00237

Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences. 1989, 46(20), 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

Chotamonsak, C.; Salathé Jr, E. P.; Kreasuwan, J.; Chantara, S.; Siriwitayakorn, K. Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmospheric Science Letters. 2011, 12(2), 213-219. https://doi.org/10.1002/asl.313

Amnuaylojaroen, T.; Barth, M. C.; Pfister, G.; Bruyere, C. Simulations of emissions, air quality, and climate contribution in Southeast Asia for March and December. Land-atmospheric research applications in South and Southeast Asia. 2018, 233-254. https://doi.org/10.1007/978-3-319-67474-2_12

Kaewmesri, P.; Archevarapuprok, B.; Sooktawee, S. The performance rainfall during rainy seasonal over thailand by using preliminary regional coupled atmospheric and oceanic (wrf-roms) model. GEOMATE Journal. 2018, 14(45), 109-115. https://doi.org/10.21660/2018.45.7326

Ratjiranukool, P.; Ratjiranukool, S. Projection of Extreme Temperature over Northern Thailand by WRF Model. Applied Mechanics and Materials. 2017, 866, 104-107. https://doi.org/10.4028/www.scientific.net/AMM.866.104

Arpornrat, T.; Ratjiranukool, S.; Ratjiranukool, P.; Sasaki, H. Evaluation of southwest monsoon change over Thailand by high-resolution regional climate model under high RCP emission scenario. In Journal of Physics: Conference Series. 2018, 1144(1), 012112. https://doi.org/10.1088/1742-6596/1144/1/012112

Kirtsaeng, S.; Kreasuwun, J.; Chantara, S.; Kirtsaeng, S.; Sukthawee, P.; Masthawee, F. Weather Research and Forecasting (WRF) model performance for a simulation of the 5 November 2009 heavy rainfall over southeast of Thailand. Chiang Mai J Sci. 2012, 39(3), 511-523.

Yu, K.; Hui, P.; Zhou, W.; Tang, J. Evaluation of multi‐RCM high‐resolution hindcast over the CORDEX East Asia Phase II region: Mean, annual cycle and interannual variations. International Journal of Climatology. 2020, 40(4), 2134-2152. https://doi.org/10.1002/joc.6323

Schulzweida, U.; Kornblueh, L.; Quast, R. CDO user guide. 2019.

Faikrua, A.; Pimonsree, S.; Wang, L.; Limsakul, A.; Singhruck, P.; Dong, Z. Decadal increase of the summer precipitation in Thailand after the mid-1990s. Climate Dynamics. 2020, 55, 3253-3267. https://doi.org/10.1007/s00382-020-05443-8

Manomaiphiboon, K.; Octaviani, M.; Torsri, K.; Towprayoon, S. Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios. Climate research. 2013, 58(2), 97-115. https://doi.org/10.3354/cr01188