Impacts of Climate Change and Regional Variations on Future Rainfall Patterns in Thailand by Downscaling Method
Main Article Content
Abstract
In this study, we investigated the impacts of climate change on rainfall patterns in Thailand using the downscaling method. The simulation data was obtained from the Weather Research and Forecasting (WRF) model, using the Community Earth System Model (CCSM) as a boundary condition. The characteristics of rainfall were analyzed in terms of the total annual rainfall, rainfall intensity, the number of days with heavy rain, and the total amount of rainfall in each season in the future compared to the base periods. It was found that the simulation of the climate in upper Thailand was consistent with the reanalysis values, with TCC ranging from 0.6 to 0.9. The simulated annual rainfall amount is underestimated throughout the country. There are indications that rainfall will increase in average and extreme terms in some regions, including the eastern region of the Northeast, the western side of the North, and the upper part of the West. In the southern part of the country, the overall rainfall indices are expected to decrease with low confidence in almost the entire region.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Dore, M. H. Climate change and changes in global precipitation patterns: what do we know?. Environment international. 2005, 31(8), 1167-1181. https://doi.org/10.1016/j.envint.2005.03.004
Pachauri, R. K.; Allen, M. R.; Barros, V. R.; Broome, J.; Cramer, W.; Christ, R.; ... & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). Ipcc. 2014.
Adedeji, O. Global climate change. Journal of Geoscience and Environment Protection. 2014, 2(2), 114. https://doi.org/10.4236/gep.2014.22016
Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D. W.; Medina-Elizade, M. Global temperature change. Proceedings of the National Academy of Sciences. 2006, 103(39), 14288-14293. https://doi.org/10.1073/pnas.0606291103
IPCC, I. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change.
Lindsey, R.; Dahlman, L. Climate change: Global temperature. Climate. Gov. 2020, 16.
Sentian, J., Payus, C. M., Herman, F., & Kong, V. W. Y. (2022). Climate change scenarios over Southeast Asia. APN Science Bulletin. https://doi.org/10.30852/sb.2022.1927
Trenberth, K.E. Changes in precipitation with climate change. Climate research. 2011, 47(1-2),123-138. https://doi.org/10.3354/cr00953
Nurse, L. A.; McLean, R. F.; Agard, J.; Briguglio, L. P.; Duvat-Magnan, V.; Pelesikoti, N.; ... & Webb, A. Small islands Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed VR Barros et al. 2014.
Masson-Delmotte, V. P.; Zhai, P.; Pirani, S. L.; Connors, C.; Péan, S.; Berger, N.; ... & Scheel Monteiro, P. M. Ipcc, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. 2021.
Chong-Hai, X. U.; Ying, X. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters. 2012, 5(6), 527-533. https://doi.org/10.1080/16742834.2012.11447042
Oh, S. G.; Park, J. H.; Lee, S. H.; Suh, M. S. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. Journal of Geophysical Research: Atmospheres. 2014, 119(6), 2913-2927. https://doi.org/10.1002/2013JD020693
Chen, H.; Sun, J. Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorology and Atmospheric Physics. 2013, 121, 55-77. https://doi.org/10.1007/s00703-013-0257-5
Chinvanno, S.; Luang-aram, V.; Sangmanee, C.; Thanakitmetavut, J. Future Climate Projection for Mainland Southeast Asia Countries: Climate Change Scenario of 21st Century. APN, 36. 2011. https://doi.org/10.30852/sb.2011.35
Maijandee, S.; Kreasuwun, J.; Komonjinda, S.; Promnopas, W. Effects of climate change on future extreme rainfall indices over Thailand. Global NEST Journal. 2014, 16(2), 306-315. https://doi.org/10.30955/gnj.001227
Amnuaylojaroen, T. Projection of the precipitation extremes in Thailand under climate change scenario RCP8. 5. Frontiers in Environmental Science. 2021, 9, 657810. https://doi.org/10.3389/fenvs.2021.657810
Manomaiphiboon, K.; Octaviani, M.; Torsri, K.; Towprayoon, S. Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios. Climate research. 2013, 58(2), 97-115. https://doi.org/10.3354/cr01188
Tangang, F.; Santisirisomboon, J.; Juneng, L.; Salimun, E.; Chung, J.; Supari, S.; ... & Yang, H. Projected future changes in mean precipitation over Thailand based on multi‐model regional climate simulations of CORDEX Southeast Asia. International Journal of Climatology. 2019, 39(14), 5413-5436. https://doi.org/10.1002/joc.6163
Masud, M. B.; Soni, P.; Shrestha, S.; Tripathi, N. K. Changes in climate extremes over North Thailand, 1960-2099. Journal of Climatology. 2016. https://doi.org/10.1155/2016/4289454
Gent, P. R.; Danabasoglu, G.; Donner, L. J.; Holland, M. M.; Hunke, E. C.; Jayne, S. R.; ... & Zhang, M. The community climate system model version 4. Journal of climate. 2011, 24(19) , 4973-4991. https://doi.org/10.1175/2011JCLI4083.1
Kain, J. S.; Fritsch, J. M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The representation of cumulus convection in numerical models (pp. 165-170). Boston, MA: American Meteorological Society. 1993. https://doi.org/10.1007/978-1-935704-13-3_16
Kain, J. S. The Kain-Fritsch convective parameterization: an update. Journal of applied meteorology. 2004, 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Jiménez, P. A.; Dudhia, J.; González-Rouco, J. F.; Navarro, J.; Montávez, J. P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Monthly weather review. 2012, 140(3), 898-918. https://doi.org/10.1175/MWR-D-11-00056.1
Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review. 2001, 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Hong, S. Y.; Dudhia, J.; Chen, S. H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly weather review. 2004, 132(1), 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Hong, S. Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review. 2006, 134(9), 2318-2341. https://doi.org/10.1175/MWR3199.1
Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave (Paper 97JD00237). Journal of geophysical research-all series. 1997, 102, 16-663. https://doi.org/10.1029/97JD00237
Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences. 1989, 46(20), 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Chotamonsak, C.; Salathé Jr, E. P.; Kreasuwan, J.; Chantara, S.; Siriwitayakorn, K. Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmospheric Science Letters. 2011, 12(2), 213-219. https://doi.org/10.1002/asl.313
Amnuaylojaroen, T.; Barth, M. C.; Pfister, G.; Bruyere, C. Simulations of emissions, air quality, and climate contribution in Southeast Asia for March and December. Land-atmospheric research applications in South and Southeast Asia. 2018, 233-254. https://doi.org/10.1007/978-3-319-67474-2_12
Kaewmesri, P.; Archevarapuprok, B.; Sooktawee, S. The performance rainfall during rainy seasonal over thailand by using preliminary regional coupled atmospheric and oceanic (wrf-roms) model. GEOMATE Journal. 2018, 14(45), 109-115. https://doi.org/10.21660/2018.45.7326
Ratjiranukool, P.; Ratjiranukool, S. Projection of Extreme Temperature over Northern Thailand by WRF Model. Applied Mechanics and Materials. 2017, 866, 104-107. https://doi.org/10.4028/www.scientific.net/AMM.866.104
Arpornrat, T.; Ratjiranukool, S.; Ratjiranukool, P.; Sasaki, H. Evaluation of southwest monsoon change over Thailand by high-resolution regional climate model under high RCP emission scenario. In Journal of Physics: Conference Series. 2018, 1144(1), 012112. https://doi.org/10.1088/1742-6596/1144/1/012112
Kirtsaeng, S.; Kreasuwun, J.; Chantara, S.; Kirtsaeng, S.; Sukthawee, P.; Masthawee, F. Weather Research and Forecasting (WRF) model performance for a simulation of the 5 November 2009 heavy rainfall over southeast of Thailand. Chiang Mai J Sci. 2012, 39(3), 511-523.
Yu, K.; Hui, P.; Zhou, W.; Tang, J. Evaluation of multi‐RCM high‐resolution hindcast over the CORDEX East Asia Phase II region: Mean, annual cycle and interannual variations. International Journal of Climatology. 2020, 40(4), 2134-2152. https://doi.org/10.1002/joc.6323
Schulzweida, U.; Kornblueh, L.; Quast, R. CDO user guide. 2019.
Faikrua, A.; Pimonsree, S.; Wang, L.; Limsakul, A.; Singhruck, P.; Dong, Z. Decadal increase of the summer precipitation in Thailand after the mid-1990s. Climate Dynamics. 2020, 55, 3253-3267. https://doi.org/10.1007/s00382-020-05443-8
Manomaiphiboon, K.; Octaviani, M.; Torsri, K.; Towprayoon, S. Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios. Climate research. 2013, 58(2), 97-115. https://doi.org/10.3354/cr01188