The Potential of Near-infrared Spectroscopy to Predict Soil Nutrient Contents Based on Soil Color

Main Article Content

Piyamas Khammao
Wutthida Rattanapichai
Roongroj Pitakdantham
Poonpipope Kasemsap
Kannika Sajjaphan

Abstract

Near-infrared spectroscopy (NIRs) analysis in laboratory-based settings has the potential to predict soil elements. The aim was to explore the effects of soil color on the prediction of total nitrogen (N), available phosphorus (P), and extractable potassium (K) contents using near-infrared spectroscopy in the range of 1000–2500 nm. Two hundred forty soil samples were collected from a paddy field in northeast Thailand. We divided the soil samples based on soil color using the Munsell color chart to construct a model to predict nutrient contents based on soil color. Regression models for soil nutrient contents were developed using partial least squares regression (PLSR) models. The best predictions were obtained for N (R² = 0.87, RMSE = 0.131), P (R² = 0.87, RMSE = 7.713) and K (R² = 0.77, RMSE = 14.944). This research demonstrates the viability of employing Near-Infrared spectroscopy (NIRs) as a reasonable method for predicting soil nutrient contents.

Article Details

Section
Research Articles

References

Cohen, M.J.; Prenger, J.P.; DeBusk, W.F. Visible-Near Infrared Reflectance Spectroscopy for Rapid, Nondestructive Assessment of Wetland Soil Quality. J. Environ. Qual. 2005, 34, 1422–1434. https://doi.org/10.2134/jeq2004.0353

Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 2006, 131, 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007

Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. TrAC - Trends Anal. Chem. 2002, 21, 240–250. https://doi.org/10.1016/S0165-9936(02)00404-1

Batten, G.D. Plant analysis using near infrared reflectance spectroscopy: The potential and the limitations. Aust. J. Exp. Agric. 1998, 38, 697–706 . https://doi.org/10.1071/EA97146

He, Y., Huang, M., García, A., Hernández, A., Song, H.: Prediction of soil macronutrients content using near-infrared spectroscopy. Comput. Electron. Agric. 2007, 58, 144–153. https://doi.org/10.1016/j.compag.2007.03.011

Johnson, J.M.; Sila, A.; Senthilkumar, K.; Shepherd, K.D.; Saito, K. Application of infrared spectroscopy for estimation of concentrations of macro- and micronutrients in rice in sub-Saharan Africa. F. Crop. Res. 2021, 270, 108222. https://doi.org/10.1016/j.fcr.2021.108222

Kim, Y.J.; Choi, C.H. The analysis of paddy soils in Korea using visible-near infrared spectroscopy for development of real-time soil measurement system. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 559–565. https://doi.org/10.1007/s13765-013-3067-z

Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma. 2019, 340, 70–80. https://doi.org/10.1016/j.geoderma.2018.12.049

Salazar, O.; Benvenuto, A.; Fajardo, M.; Fuentes, J.P.; Nájera, F.; Celedón, A.; Pfeiffer, M.; Renwick, L.L.R.; Seguel, O.; Tapia, Y.; Casanova, M. Evaluation of a miniaturized portable NIR spectrometer for the prediction of soil properties in Mediterranean central Chile. Geoderma Reg. 2023, 34, e00675. https://doi.org/10.1016/j.geodrs.2023.e00675

Peng, Y.; Zhao, L.; Hu, Y.; Wang, G.; Wang, L.; Liu, Z. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy. ISPRS Int. J. Geo-Information. 2019, 8. https://doi.org/10.3390/ijgi8100437

Munawar, A.A.; Yunus, Y.; Devianti, Satriyo, P. Calibration models database of near infrared spectroscopy to predict agricultural soil fertility properties. Data Br. 2020, 30, 105469. https://doi.org/10.1016/j.dib.2020.105469

Ibáñez-Asensio, S.; Marqués-Mateu, A.; Moreno-Ramón, H.; Balasch, S. Statistical relationships between soil colour and soil attributes in semiarid areas. Biosyst. Eng. 2013, 116, 120–129. https://doi.org/10.1016/j.biosystemseng.2013.07.013

Ketterings, Q.M.; Bigham, J.M. Soil Color as an Indicator of Slash‐and‐Burn Fire Severity and Soil Fertility in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 2000, 64, 1826–1833. https://doi.org/10.2136/sssaj2000.6451826x

Schmidt, S.A.; Ahn, C. Analysis of soil color variables and their relationships between two field-based methods and its potential application for wetland soils. Sci. Total Environ. 2021, 783, 147005. https://doi.org/10.1016/j.scitotenv.2021.147005

Christensen, L.K.; Bennedsen, B.S.; Jørgensen, R.N.; Nielsen, H. Modelling nitrogen and phosphorus content at early growth stages in spring barley using hyperspectral line scanning. Biosyst. Eng. 2004, 88, 19–24. https://doi.org/10.1016/j.biosystemseng.2004.02.006

Schwertmann, U. Relations between iron oxides, soil color, and soil formation. Soil Color. Proc. Symp. San Antonio. 1993. 51–69.

Simonson, R.W. Soil color standards and terms for field use-history of their development. Madison: Soil Society of America. 1993.

Torrent, J., Barrón, V.: The visible diffuse reflectance spectrum in relation to the color and crystal properties of hematite. Clays Clay Miner. 2003, 51, 309–317. https://doi.org/10.1346/CCMN.2003.0510307

Brady, N.C.; Weil, R.R. The nature and properties of soils. New Jersey Prentice Hall. 2006.

Konen, M.E.; Burras, C.L.; Sandor, J.A. Organic Carbon, Texture, and Quantitative Color Measurement Relationships for Cultivated Soils in North Central Iowa. Soil Sci. Soc. Am. J. 2003, 67, 1823–1830. https://doi.org/10.2136/sssaj2003.1823

Schulze, D.G.; Nagel, J.L.; Van Scoyoc, G.E.; Henderson, T.L.; Baumgardner, M.F.; Stott, D.E. Significance of organic matter in determining soil colors. , Madison: Soil Society of America. 1993.

Munsell Color: Munsell Soil Color Charts, 2000, Revised Washable Edition. , Gretagmacbeth, New Windsor, NY.

Soil Science Division Staff. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. , Government Printing Office, Washington, D.C. 2017.

Stoner, E.R.; Baumgardner, M.F. Characteristic Variations in Reflectance of Surface Soils. Soil Sci. Soc. Am. J. 1981, 45, 1161–1165. https://doi.org/10.2136/sssaj1981.03615995004500060031x

Baumgardner, M.F.; Silva, L.R.F.; Biehl, L.L.; Stoner, E.R. Reflectance properties of soils. Adv. Agron. 1986, 38, 1–44. https://doi.org/10.1016/S0065-2113(08)60672-0

Shields, J.A.; Paul, E.A.; Arnaud, R.J.S.; Head, W.K. Spectrometric Measurment of Soil Color and its Relationship to Moisture and Organic Matter. Can. J. Sci. 1968, 48, 271–280.

Condit, H.R. Spectral Reflectance of American Soils. Photogramm Eng. 1970, 36, 955–966.

Moritsuka, N.; Matsuoka, K.; Katsura, K.; Sano, S.; Yanai, J. Soil color analysis for statistically estimating total carbon, total nitrogen and active iron contents in Japanese agricultural soils. Soil Sci. Plant Nutr. 2014, 60, 475–485. https://doi.org/10.1080/00380768.2014.906295

Mouazen, A.M.; Karoui, R.; Deckers, J.; De Baerdemaeker, J.; Ramon, H. Potential of visible and near-infrared spectroscopy to derive colour groups utilising the Munsell soil colour charts. Biosyst. Eng. 2007, 97, 131–143. https://doi.org/10.1016/j.biosystemseng.2007.03.023

Gholizadeh, A.; Saberioon, M.; Viscarra Rossel, R.A.; Boruvka, L.; Klement, A. Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma. 2020, 357, 113972. https://doi.org/10.1016/j.geoderma.2019.113972

Viscarra Rossel, R.A.; Fouad, Y.; Walter, C. Using a digital camera to measure soil organic carbon and iron contents. Biosyst. Eng. 2008, 100, 149–159. https://doi.org/10.1016/j.biosystemseng.2008.02.007

Jackson, P.E.; Krol, J.; Heckenberg, A.L.; Mientijes, M.; Staal, W. Determination of total nitrogen in food, environmental and other samples by ion chromatography after Kjeldahl digestion. J. Chromatogr. A. 1991, 546, 405–410. https://doi.org/10.1016/S0021-9673(01)93039-0

Bray, R.H.; Kurtz, L.T.: Determination of total, organic and available forms of phosphorus in soils. 1945.

Jackson, K.W.; Chen, G. Atomic absorption, atomic emission, and flame emission spectrometry. Anal. Chem. 1996, 68, 231–256. https://doi.org/10.1021/a1960012l

Shao, Y.; He, Y. Nitrogen, phosphorus, and potassium prediction in soils, using infrared spectroscopy. Soil Res. 2011, 49, 166–172. https://doi.org/10.1071/SR10098

Pudełko, A.; Chodak, M. Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods. Geoderma. 2020, 368. https://doi.org/10.1016/j.geoderma.2020.114306

Chen, Z.; Ren, S.; Qin, R.; Nie, P. Rapid Detection of Different Types of Soil Nitrogen Using Near-Infrared Hyperspectral Imaging. Molecules. 2022, 27, 2017. https://doi.org/10.3390/molecules27062017

Wold, S.; Martens, H.; Wold, H. A multivariate calibration problem in analytical chemistry solved by the PLS method. Lect. Notes Math. 1983, 46, 286–293.

Wang, H.; Liu, Q.; TU, Y. Identification of Optimal Subspace from PLS Regression. J. Beijing Univ. Aeronaut. Astronaut. (In China). 2000, 26, 473.

Zhang, Y.; Li, M.Z.; Zheng, L.H.; Zhao, Y.; Pei, X.: Soil nitrogen content forecasting based on real-time NIR spectroscopy. Comput. Electron. Agric. 2016, 124, 29–36. https://doi.org/10.1016/j.compag.2016.03.016

He, H.J.; Wu, D.; Sun, D.W. Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis-NIR) hyperspectral imaging. Food Chem. 2014, 156, 394–401. https://doi.org/10.1016/j.foodchem.2014.01.118

Demattê, J.A.M. Characterization and discrimination of soils by their reflected electromagnetic energy. Pesqui. Agropecu. Bras. 2002, 37, 1445–1458. https://doi.org/10.1590/S0100-204X2002001000013

Sørensen, L.K.; Dalsgaard, S. Determination of Clay and Other Soil Properties by Near Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2005, 69, 159. https://doi.org/10.2136/sssaj2005.0159

Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. https://doi.org/10.1016/S0065-2113(10)07005-7

Whiting, M.L.; Li, L.; Ustin, S.L. Predicting water content using Gaussian model on soil spectra. Remote Sens. Environ. 2004, 89, 535–552. https://doi.org/10.1016/j.rse.2003.11.009

Demattê, J.A.M.; Horák-Terra, I.; Beirigo, R.M.; Terra, F. da S.; Marques, K.P.P.; Fongaro, C.T.; Silva, A.C.; Vidal-Torrado, P. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. J. Environ. Manage. 2017, 197, 50–62. https://doi.org/10.1016/j.jenvman.2017.03.014

Nascimento, A.F. do; Furquim, S.A.C.; Couto, E.G.; Beirigo, R.M.; Oliveira Júnior, J.C. de; Camargo, P.B. de; Vidal-Torrado, P. Genesis of textural contrasts in subsurface soil horizons in the Northern Pantanal-Brazil. Rev. Bras. Ciência do Solo. 2013, 37, 1113–1127. https://doi.org/10.1590/s0100-06832013000500001

Nascimento, A.F.; Furquim, S.A.C.; Graham, R.C.; Beirigo, R.M.; Oliveira Junior, J.C.; Couto, E.G.; Vidal-Torrado, P. Pedogenesis in a Pleistocene fluvial system of the Northern Pantanal - Brazil. Geoderma. 2015, 58–72. https://doi.org/10.1016/j.geoderma.2015.04.025

De Arruda Oliveira Coringa, E.; Couto, E.G.; Torrado, P.V. Soil geochemistry of the northern pantanal, mato grosso, Brazil. Rev. Bras. Cienc. do Solo. 2014, 38, 1784–1793. https://doi.org/10.1590/s0100-06832014000600013

Franzmeier, D. Relation of Organic Matter Content to Texture and Color of Indiana Soils. 1998.

Lindbo, D.L.; Rabenhorst, M.C.; Rhoton, F.E. Soil color, organic carbon, and hydromorphology relationships in sandy epipedons. Quantifying Soil Hydromorphology. 1998, 54, 95–105. https://doi.org/10.2136/sssaspecpub54.c6

Liles, G.C.; Beaudette, D.E.; O’Geen, A.T.; Horwath, W.R. Developing predictive soil C models for soils using quantitative color measurements. Soil Sci. Soc. Am. J. 2013, 77, 2173–2181. https://doi.org/10.2136/sssaj2013.02.0057