Optimizing Organic Fertilization for Marguerite Daisy (Argyranthemum frutescens): Impact of Application Rate and Frequency on Growth and Yield
Main Article Content
Abstract
Edible flowers are a new market for horticulture plants. Beyond their attractive shapes and colors, this group of plants contains secondary metabolites that benefit human health. This study aims to investigate the growth and flower yield of marguerite daisies using organic fertilizer at different rates and frequencies. The experiment was designed as a factorial, completely randomized design with two factors: fertilizer rate (0.5, 1.0, and 1.5 times compared to the total nitrogen content in chemical fertilizer) and frequency of organic fertilizer application (every 30 and 15 days). Slow-release chemical fertilizer (Osmocote 13-13-13) was used as a control. The experiment reveals that the rate of organic fertilizer application significantly affected the growth and flower yield of Marguerite daisy. Still, the frequency of organic fertilizer application did not significantly affect it. Application at 1.5 times yielded the most significant growth and flower production compared to 0.5 and 1 times of application. When comparing the results of organic fertilizer application with 13-13-13 chemical fertilizer, it was found that applying organic fertilizer 1.0 times and 1.5 times every 15 or 30 days resulted in similar plant growth and flower size as with the chemical fertilizer (p>0.05). However, chemical fertilizer produced the highest chlorophyll index (SPAD), accumulated flower buds, and flower blooming per pot (p<0.05). The plant requires more than 1.5 times the organic fertilizer application to achieve flower production equivalent to chemical fertilizer.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible flowers: antioxidant compounds and their functional properties. Horticulturae. 2021, 7(4), 66. https://doi.org/10.3390/horticulturae7040066
Purohit, S.R.; Rana, S.S.; Idrishi, R.; Sharma, V.; Ghosh, P. A review on nutritional, bioactive, toxicological properties and preservation of edible flowers. J. Future Foods. 2021, 4, 100078. https://doi.org/10.1016/j.fufo.2021.100078
Netam, N. Edible flower cultivation: A new approach in floriculture industry. The Pharma Innovation Journal. 2021, 10(3), 857-859. https://doi.org/10.22271/tpi.2021.v10.i3l.5896
Gonzalez, A.G.; Estevez-Reyes, R.; Estevez-Braun, A.; Ravelo, A.G.; Jimenez, I.A.; Bazzocchi, I.L.; Aguilar, M.A.; Moujir, L. Biological activities of some Argyranthemum species. Phytochemistry. 1997, 45(5), 963-967. https://doi.org/10.1016/S0031-9422(97)00063-0
Fernandez, J.A.; Ayastuy, M.E.; Belladonna, D.P.; Comezana, M.M.; Contreras, J.; Mourao, I.M.; Orden, L.; Rpdriguez, R.A. Current trends in organic vegetable crop production: practices and technique. Horticulturae. 2022, 8, 893. https://doi.org/10.3390/horticulturae8100893
Jones. C.S.; Drake, C.W.; Hruby, C.E.; Schilling, K.E.; Wolter, C.F. Livestock manure driving stream nitrate. Ambio. 2019, 48(10), 1143-1153. https://doi.org/10.1007/s13280-018-1137-5
Singh, V.; Sharma, S.; Kumar, P.; Bhardwaj, S.; Gautam, H. Conjoint application of bio-organic and inorganic nutrient sources for improving cropping behaviour, soil properties and quality attributes of apricot (Prunus armeniaca). Indian J. Agric. Sci. 2010, 80, 981-987.
Wang, J.; Li, X.; Xing, S.; Ma, Z.; Hu, S.; Tu, C. Bio-organic fertilizer promotes plant growth and yield and improves soil microbial community in continuous monoculture system of Chrysanthemum morifolium cv. Chuju. Int. J. Agric. Biol. 2017, 19, 563-568. https://doi.org/10.17957/IJAB/15.0339
Liu, X.; Zhang, Y.; Jiang, Z.; Yue, X.; Liang, J.; Yang, Q.; Li, J.; Li, N. Micro-moistening irrigation combined with bio-organic fertilizer: An adaptive irrigation and fertilization strategy to improve soil environment, edible Rose yield, and nutritional quality. Ind. Crops Prod. 2023, 196, 116487. https://doi.org/10.1016/j.indcrop.2023.116487
Agbo, C.U.; Chukwudi, P.U.; Ogbu, A.N. Effects of rates and frequency of application of organic manure on growth, yield and biochemical composition of Solanum melongena L. (cv. “Nawa local”) fruits. J Anim Plant Sci. 2012, 14 (2), 1952-1960.
Bi, G.; Evans, W.B.; Spiers, J.M.; Witcher, A. Effects of organic and inorganic fertilizers on marigold growth and flowering. Hort. Science. 2010, 45(9), 1373-1377. https://doi.org/10.21273/HORTSCI.45.9.1373
Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50(6), 1325-1338. https://doi.org/10.1002/jeq2.20295
Vione, E.L.B.; Drescher, G.L.; da Silva, L.S.; Giacomini, S.J.; Aita, N.T.; da Silva, A.A.K.; Prigol, L.H.F. Nitrogen mineralization of compost and vermicompost from different animal manure and its recovery by lettuce using 15N. SSRN. 2023. http://dx.doi.org/10.2139/ssrn.4385890
Niedzinski, T.; Sierra, M.J.; Labetowicz, J.; Noras, K.; Cabrales, C.; Millan, R. Release of nitrogen from granulate mineral and organic fertilizers and its effect on selected chemical parameters of soil. Agronomy. 2021, 11, 1981. https://doi.org/10.3390/agronomy11101981
Ruamrungsri, S.; Panjama, K.; Ohyama, T.; Inkham, C. Nitrogen in flowers. In T. Ohyama & K. Inubushi (Eds.), Nitrogen in Agriculture. IntechOpen. 2021. https://doi.org/10.5772/intechopen.98273
Lalk, G.T.; Bi, G.; Stafne, E.T.; Li, T. Fertilizer type and irrigation frequency affect plant growth, yield, and gas exchange of containerized strawberry cultivars. Technology in Horticulture. 2023, 3, 1-8. https://doi.org/10.48130/TIH-2023-0003
Gaskell, M.; Bolda, M.P.; Muramoto, J.; Daugovish, O. Strawberry nitrogen fertilization from organic nutrient sources. Acta Hortic. 2009, 842, 385-88. https://doi.org/10.17660/ActaHortic.2009.842.74
Porro, D.; Dorigatti, C.; Stefanini, M; Ceschini, A. Use of SPAD meter in diagnosis of nutritional status in apple and grapevine. Acta Hortic. 2001, 564, 243-252. https://doi.org/10.17660/ActaHortic.2001.564.28
Pinzón-Sandoval E.H.; Balaguera-López, H.E.; Almanza-Merchán, P.J. Evaluation of SPAD index for estimating nitrogen and magnesium contents in three blueberry varieties (Vaccinium corymbosum L.) on the Andean Tropics. Horticulturae. 2023, 9, 269. https://doi.org/10.3390/horticulturae9020269
Pepó, P. Correlation analysis of the SPAD readings and yield of sweet potato (Ipomoea batatas L.) under different agrotechnical conditions. Aust. J. Crop Sci. 2020, 14(05), 761-765. https://doi.org/10.21475/ajcs.20.14.05.p2124
Ramesh, K.; Chandrasekaran, B.; Balasubramanian, T.; Bangarusamy, U.; Sivasamy, R.; Sankaran, N. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relation with grain yield. J. Agron. Crop Sci. 2002, 188, 102-105. https://doi.org/10.1046/j.1439-037X.2002.00532.x
Broschat, T.K.; Moore, K.K. Release rates of ammonium-nitrogen, nitrate-nitrogen, phosphorus, potassium, magnesium, iron, and manganese from seven controlled-release fertilizers. Commun. Soil Sci. Plant. 2007, 38, 843-850. https://doi.org/10.1080/00103620701260946
Dangi., S.P.; Aryal, K.; Magar, P.S.; Bhattarai, S.; Shrestha, D.; Gyawali, S.; Basnet, M. Study on effect of phosphorus on growth and flowering of marigold (Tagetes erecta). JOJ Wildl Biodivers. 2019, 1(5), 555571. https://doi.org/10.19080/JOJWB.2019.01.555571
de Morais, J.S.; Cabral, L.; da Costa, W.K.A.; Uhlmann, L.O.; Lima, M.S.; Noronha,M.F.; dos Santos, S.A.; Madruga, M.S.; Olegario, L.S.; Wagner, R.; Sant'Ana, A.S.; Magnani, M. Chemical and volatile composition, and microbial communities in edible purple flowers (Torenia fournieri F. Lind.) cultivated in different organic systems. Food Res. Int. 2022, 162, 111973. https://doi.org/10.1016/j.foodres.2022.111973