Long-Term Seasonal Rainfall Forecasting using Regression Analysis and Artificial Neural Network together with Larg-Scale Circulation Indices

Main Article Content

Ketvara Sittichok
Napatsorn Rattanapan
Rittisak Sakulkaew

Abstract

Long-term rainfall prediction several months in advance plays an important role in water management, especially for countries dependent on agriculture. The objective of this study is to forecast the long-term rainfall of eight rain gauge stations in the Phetchaburi River Basin, Thailand, 12–18 months in advance using linear regression (simple linear regression (SLR)/multiple linear regression (MLR)) and non-linear relations (polynomial regression (PR)/artificial neural network (ANN)). Seven atmospheric circulation indices: ONI, DMI, MEI V. 2, NINO4, NINO3.4, NINO3, and NINO1+2, together with historical rainfall data, were used as predictors in the models. To avoid bias in empirical equation construction, one-year cross-validation was also applied together with a one-month moving window average approach from January to July of the preceding year (12–18 months lead time) to seek suitable periods of predictors for predicting rainfall. The results reveal that the surface temperature indices of the Indian Ocean (DMI) and Pacific Ocean (NINO) are the most essential for forecasting rainfall. MEIV2 and ONI were positively correlated with local rainfall only when non-linear regression was used. Non-linearity models showed better forecasting skills compared to linear regression. The suitability of periods varied according to the statistical models and selected predictors.

Article Details

Section
Research Articles

References

Yumagulova, L.; Vertinsky, I. Climate Change Adaptation and Flood Management in Metro Vancouver Regional Area: Can an Exercise in Herding Cats be successful. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5(3), 273-288. https://doi.org/10.13044/j.sdewes.d5.0149

Hossain, L.; Rasel, H. M.; Lmteaz, M. A.; Mekanik, F. Long-Term Seasonal Rainfall Forecasting using Linear and Non-Linear Modelling Approaches: A Case Study for Western Australia. Meteoro. Atmos. Phys. 2020, 132, 131-141. https://doi.org/10.1007/s00703-019-00679-4

Singh, S.; Xiaosheng, Q. Study of Rainfall Variabilities in Southeast Asia using Long-Term Gridded Rainfall and Its Substantiation through Global Climate Indices. J. Hydrol. 2020, 585, 124320. https://doi.org/10.1016/j.jhydrol.2019.124320

Chen, L.; Dool, H.; Becker, E.; Zhang, Q. ENSO Precipitation and Temperature Forecasts in the North American Multimodel Ensemble: Composite Analysis and Validation. Am. Meteorol. Soc. 2017, 1103-1125 . https://doi.org/10.1175/JCLI-D-15-0903.1

Adhikari, S.; Liyanaarachchi, S.; Chandimala, J.; Nawarathna, B. K.; Bandara, R.; Yahiya, Z.; Zubair, L. Rainfall Prediction based on the Relationship between Rainfall and El Nino Southern Oscillation (ENSO), J. Natl. Sci. Found. Sri. 2010, 38(4), 249-255. https://doi.org/10.4038/jnsfsr.v38i4.2652

Hossain, L.; Rasel, H. M.; Lmteaz, M.A.; Mekanik, F.; Long-Term Seasonal Rainfall Forecasting: Efficiency of Linear Modelling Technique. Environ. Earth Sci. 2018, 77(280), 1-10. https://doi.org/10.1007/s12665-018-7444-0

Jung, J.; Kim, H. S. Predicting Temperature and Precipitation during the Flood Season based on Teleconnection. Geosci. Lett. 2022, 9(4), 1-37. https://doi.org/10.1186/s40562-022-00212-3

De Silva, M.; Hornberge,r G. M. Identifying El Nino-Southern Oscillation Influences of Rainfall with Classification Models: Implications for Water Resource Management of Sri Lanka. Hydrol. Earth Syst. Sci. 2019, 23, 1905-1929. https://doi.org/10.5194/hess-23-1905-2019

Khastagir, A.; Hossain, I.; Anwar, A. H. M. F. Efficacy of Linear Multiple Regression and Artificial Neural Network for Long-Term Rainfall Forecasting in Western Australia. Meteorol. Atmos. Phys. 2022, 134, 69. https://doi.org/10.1007/s00703-022-00907-4

Pontoh, R. S.; Toharudin, T.; Ruchjana, B. N.; Sijabat, N.; Puspita, M. D. Bandung Rainfall Forecast and Its Relationship with Nino 3.4 using Nonlinear Autoregressive Exogenous Neural Network. Atmosphere. 2022, 13, 302. https://doi.org/10.3390/atmos13020302

Kim, C. G.; Lee, J.; Lee, J. E.; Kim, N. W.; Kim, H. Monthly Precipitation Forecasting in the Han River Basin, South Korea, using Large Scale Teleconnection and Multiple Regression Models. Water. 2020, 12, 1590. https://doi.org/10.3390/w12061590

Gnanasankaran, N.; Ramaraj, E. A. Multiple Linear Regression Model to Predict Rainfall using Indian Meteorological Data. Int. J. Adv. Sci. Technol. 2020, 29(8), 746-758.

Sittichok, K. Seasonal Rainfall Forecasting in Tropical Region Using Statistical Models and Sea Surface Temperatures. Science and Technology Journal. 2016, 5(3), 33-50.

Abbot, J.; Marohasy, J. Forecasting of Medium-Term Rainfall using Artificial Neural Networks: Case Studies from Eastern Australia. Engineering and Mathematical Topics in rainfall Intech. 2017, https://doi.org/10.5772/intechopen.72619. https://doi.org/10.5772/intechopen.72619

Lee, J.; Kim, C. G.; Lee, J. E.; Kim, N. W.; Kim, H. Medium-Term Rainfall Forecasts using Artificial Neural Networks with Monte-Carlo Cross-Validation and Aggregation for the Han River Basin, Korea. Water. 2020, 12, 1743. https://doi.org/10.3390/w12061743

Afshin, S.; Fahmi, H.; Alizadeh, A.; Sedghi, H.; Kaveh, F. Long Term Rainfall Forecasting by Integrated Artificial Neural Network-Fuzzy Logic-Wavelet Model in Karoon Basin. J. Sci. Res. Essay. 2011, 6, 1200-1208.

Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A. Multiple Regression and Artificial Neural Network for Long-Term Rainfall Forecasting using Large Scale Climate Modes. J. Hydrol. 2013, 503, 11-21. https://doi.org/10.1016/j.jhydrol.2013.08.035

Acharya, R.; Pal, J., Das, D.; Chaudhuri, S. Long-Range Forecast of Indian Summer Monsoon Rainfall using an Artificial Neural Network Model. Meteorol. Appl. 2017, 26, 347-361. https://doi.org/10.1002/met.1766

Darji, M. P.; Dabhi, V. K.; Prajapati, H. B. Rainfall Forecasting using Neural Network: a Survey. Proceeding of International Conference on Advances in Computer Engineering and Applications (ICACEA), IMS Engineering College, Ghaziabad, India. 2015. https://doi.org/10.1109/ICACEA.2015.7164782

Liu, Q.; Zou, Y.; Liu, X.; Linge, N. A Survey on Rainfall Forecasting using Artificial Neural Network, Internat. J. Embed. Syst. 2019, 11(2), 240-249. https://doi.org/10.1504/IJES.2019.098300

Sigaroodi, S.K.; Chen, Q.; Ebrahimi, S.; Nazari, A.; Choobin, B. Long-Term Precipitation forecast for Drought Relief using Atmospheric Circulation Factors: A Study on the Maharloo Basin in Iran. Hydrol.Earth Syst. Sci. 2014, DOI: 10.5194/hess-18-1995-2014. https://doi.org/10.5194/hess-18-1995-2014

Gao, Q. G.; Sombutmounvong, V.; Xiong, L.; Lee, J. H.; Kim, J. S. Analysis of Drought-Sensitive Areas and Evolution Patterns through Statistical Simulations of the Indian Ocean Diploe mode. Water. 2019, 11, 1302 . https://doi.org/10.3390/w11061302

Muangsong, C.; Cai B.; Pumijumnong N.; Hu C.; Cheng H. An Annual Laminated Stalagmite Record of the Changes in Thailand Monsoon Rainfall over the Past 387 Years and Its Relationship to IOD and ENSO. Quat. Int. 2014, 349, 91-97. https://doi.org/10.1016/j.quaint.2014.08.037

Ha, K. J.; Seo, Y. W.; Lee, J. Y.; Kripalani, R. H., Yun, K. S., Linkages between the South and East Asians Summer Monsoons: A Review and Revisit. Clim. Dyn. 2017. DOI 10.1007/s00382-017-3773-z. https://doi.org/10.1007/s00382-017-3773-z

Hoell, A.; Harrison, L.; Indian Ocean Dipole and Precipitation. Agroclimatology Fact Sheet Series (Famine Early Warning Systems Network). 2021, 3, 1-2.

Badr, H. S.; Zaitchik, B. F.; Guikema, S. Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel. J. Appl. Meteorol. Climatol. 2014, 53, 614-636. https://doi.org/10.1175/JAMC-D-13-0181.1

Golian, S.; Murphy, C.; Wilby, R. L.; Matthews, T.; Donegan, S.; Quinn, D. F.; Harrigan, S. Dynamical - Statistical Seasonal Forecasts of Winter and Summer Precipitation for the Island of Ireland. Int. J. Climatol. 2022, DOI: 10.1002/joc.7557. https://doi.org/10.1002/joc.7557