Enhancing biogas production from empty fruit bunch through acetic acid pretreatment: process optimization and synergistic effects
Main Article Content
Abstract
Empty fruit bunch (EFB), a lignocellulosic waste generated from the palm oil industry, has emerged as a promising feedstock for biogas production. The recalcitrant nature of EFB hinders its efficient biodegradation, necessitating effective pretreatment methods to enhance biogas yield. This study investigated the effect of weak acid pretreatment using acetic acid on the composition and structure of EFB and its subsequent anaerobic digestion performance. EFB was subjected to pretreatment with varying concentrations of acetic acid (0-10%) at room temperature for 7 days. The pretreated EFB was characterized using compositional analysis. Anaerobic digestion experiments were conducted in batch mode for 45 days at 35°C. Pretreatment with 4% acetic acid resulted in the highest methane yield of 265.77 mL-CH4/g-VS, representing a 55.21% improvement compared to untreated EFB. The synergistic effect of co-fermentation of acetic acid and EFB was observed at 4% acetic acid, with a synergistic CH4 value of 60.26. Compositional analysis revealed that acetic acid pretreatment led to a 12.5% reduction in lignin content and a 9.3% increase in cellulose content, enhancing the accessibility of cellulose for microbial degradation. The energy balance analysis indicated a positive net energy gain of 879.62 kWh per ton of EFB, while the economic analysis suggested a net profit of 60.00 USD per ton of EFB. Comparative analysis showed that acetic acid pretreatment outperformed other pretreatment methods, such as alkaline (28.77% improvement), steam explosion (10.96% improvement), and enzymatic (40.18% improvement) pretreatments, in terms of methane yield enhancement. The findings of this study demonstrate the effectiveness of weak aacid pretreatment in enhancing biogas production from EFB and its potential for large-scale application in the palm oil industry.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Statista. Production volume of palm oil worldwide from 2012/13 to 2020/21 (in million metric tons). 2021. https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/
Dolah, R.; Karnik, R.; Hamdan, H. A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward. Sustainability. 2021, 13, 10210. https://doi.org/10.3390/su131810210
Nieves, D. C.; Karimi, K.; Horváth, I. S. Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Industrial Crops and Products. 2011, 34(1), 1097-1101.
Liu, J.; Zuo, X.; Peng, K. et al. Biogas and Volatile Fatty Acid Production During Anaerobic Digestion of Straw, Cellulose, and Hemicellulose with Analysis of Microbial Communities and Functions. Applied Biochemistry and Biotechnology. 2022, 194, 762–782. https://doi.org/10.1007/s12010-021-03675-w
Brown, Craig.; Tao, Ling. Biofuel Production and Greenhouse Gas Reduction Potential. United States: N. p., 2023. https://doi.org/10.2172/2202642
Chaudhary, I.; Verma, S.R. Ligninolysis: Roles of Microbes and Their Extracellular Enzymes. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. 2020. https://doi.org/10.1007/978-981-15-1812-6_14
Mukherjee, P.; Pal, S.; Sivaprakasam, S. Process Parameter Controls for Efficient Enzymatic Hydrolysis of Cellulosic Biomass. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. 2024. https://doi.org/10.1007/978-94-007-6724-9_77-1
Lahboubi, N.; Kerrou, O.; Karouach, F. et al. Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree. Biomass conversion and biorefinery. 2022, 12, 3751–3760. https://doi.org/10.1007/s13399-020-00864-1
Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for biofuels. 2021, 14, 159. https://doi.org/10.1186/s13068-021-02012-x
Poddar, B.J.; Nakhate, S.P.; Gupta, R.K. et al. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International journal of environmental science and technology. 2022, 19, 3429–3456 https://doi.org/10.1007/s13762-021-03248-8
Baksi, S.; Saha, D.; Saha, S. et al. Pre-treatment of lignocellulosic biomass: review of various physico-chemical and biological methods influencing the extent of biomass depolymerization. International journal of environmental science and technology. 2023. 20, 13895–13922 https://doi.org/10.1007/s13762-023-04838-4
Yin, D.M.; Uwineza, C.; Sapmaz, T.; Mahboubi, A.; De Wever, H.; Qiao, W.; Taherzadeh, M.J. Volatile Fatty Acids (VFA) Production and Recovery from Chicken Manure Using a High-Solid Anaerobic Membrane Bioreactor (AnMBR). Membranes 2022, 12, 1133. https://doi.org/10.3390/membranes12111133
Sluiter, A.; Hames, B, Ruiz.; R, Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, Colorado. 2012.
Goering, H.; Soest, P.J. Forage fiber analyses (apparatus, reagents, prcedures, and some applications) 1970.
Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of total solids in biomass. NREL Biomass Analysis Technology Team Laboratory Analytical Procedure. 2005, 1.
Agnihotri, S.; Yin, D. M.; Mahboubi, A.; Sapmaz, T.; Varjani, S.; Qiao, W.; et al. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered. 2022, 13(1), 1249–1275. https://doi.org/10.1080/21655979.2021.1996044
Chia, S.M.; Chiong, M.C.; Panpranot, J. et al. Process optimization on co-production of lignin and cellulose in deep eutectic solvent pretreatment of oil palm empty fruit bunch. Biomass conversion and biorefinery. 2023. https://doi.org/10.1007/s13399-023-05025-8
Wadchasit P.; Siripattana C.; Seengenyoung J.; Thaweesaksakul S.; Nuithitikul K. Lecture Notes in Applied Mathematics and Applied Science in Engineering. 2019 (pp.94-102) Publisher: Malaysia Technical Scientist Association.
Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J. L.; Guwy, A. J.; Kalyuzhnyi, S. V.; Jenicek, P.; van Lier, J. B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology. 2009, 59(5), 927-934. https://doi.org/10.2166/wst.2009.040
Mamimin, C.; Prasertsan, P.; Kongjan, P.; O-Thong, S. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. Electronic journal of biotechnology, 2017, 29, 78–85. https://doi.org/10.1016/j.ejbt.2017.07.006.
APHA, Standard methods for the examination of water and waste water, 22nd edn. American Public Health Association, Washington, DC. 2012.
Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes, 2020, 8, 1048. https://doi.org/10.3390/pr8091048
Nugraha, W.; Syafrudin, S.; Pradita, L.; Matin, H.; Yono, B. Biogas Production from Water Hyacinth (Eichhornia Crassipes): The Effect of F/M Ratio. IOP Conference Series: Earth and Environmental Science. 2018, 150. 012019. https://doi.org/10.1088/1755-1315/150/1/012019.
Zhao, R.; Zhang, Z.; Zhang, R.; Li, M.; Lei, Z.; Utsumi, M.; Sugiura, N. Methane production from rice straw pretreated by a mixture of acetic-propionic acid. Bioresource Technology, 2020, 101(3), 990-994. https://doi.org/10.1016/j.biortech.2009.09.020
Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology. 2016, 199, 49-58. https://doi.org/10.1016/j.biortech.2015.08.061
Yadav, M.; Balan, V.; Varjani, S. et al. Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass. Bioenergy Research. 2023, 16, 228–247. https://doi.org/10.1007/s12155-022-10489-z
Dasgupta, A.; Chandel, M.K. Enhancement of biogas production from organic fraction of municipal solid waste using acid pretreatment. Applied Sciences. 2020, 2, 1437. https://doi.org/10.1007/s42452-020-03213-z
Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy, 2009, 33(5), 848-853. https://doi.org/10.1016/j.biombioe.2009.01.007
Li, X.; Peng, Y.; Yaqian, Z.; Zhang, L.; Han, B. Volatile Fatty Acid Accumulation by Alkaline Control Strategy in Anaerobic Fermentation of Primary Sludge. Environmental Engineering Science. 2017, 34. http://doi.org/10.1089/ees.2016.0399.
Cheah, YK.; Vidal-Antich, C.; Dosta, J. et al. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environmental Science and Pollution Research. 2019, 26, 35509–35522. https://doi.org/10.1007/s11356-019-05394-6
Mohammad, I.N.; Ongkudon, C.M.; Misson, M. Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch. Energies. 2020, 13, 5966. https://doi.org/10.3390/en13225966
Li, Y.; Jin, Y.; Li, J.; Chen, Y.; Gong, Y.; Li, Y.; Zhang, J. Current state and perspectives of anaerobic digestion for agricultural straw and lignocellulosic biomass in China. Renewable and Sustainable Energy Reviews. 2020, 127, 109880.
Bah, H.; Zhang, W.; Wu, S. Methane production from different biomass materials: The effect of biomass characteristics. Bioresource Technology. 2014, 158, 257-266.
Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology. 2016, 199, 103-112. http://doi.org/ 10.1016/j.biortech.2015.10.009.
Janke, L.; Leite, A.; Batista, K.; Weinrich, S.; Sträuber, H.; Nikolausz, M.; Nelles, M.; Stinner, W. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment. Bioresource Technology, 2015, 199, 235-244. https://doi.org/10.1016/j.biortech.2015.07.117
Chen, Y.; Cheng, J. J.; Creamer, K. S. Inhibition of anaerobic digestion process: A review. Bioresource Technology. 2014, 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
Yan, Z.; Song, Z.; Li, D.; Yuan, Y.; Liu, X.; Zheng, T. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresource Technology. 2015, 177, 266-273. https://doi.org/10.1016/j.biortech.2014.11.089
Astals, S.; Batstone, D.J.; Tait, S.; Jensen, P.D. Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Research. 2015, 81. 208-215. https://doi.org/10.1016/j.watres.2015.05.063.
Franke-Whittle, I. H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste management (New York, N.Y.), 2014, 34(11), 2080–2089. https://doi.org/10.1016/j.wasman.2014.07.020
Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012, 16(3), 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035
Baba, Y.; Tanabe, T.; Shirai, N.; Watanabe, T.; Honda, Y.; Watanabe, T. Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass and Bioenergy, 2013, 52, 316-324.
Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresource Technology, 2016, 199, 386-397. https://doi.org/10.1016/j.biortech.2015.09.007