Enhancing Methane Production from Empty Fruit Bunches by Augmented Thermoanaerobacterium thermosaccharolyticum PSU-2

Main Article Content

Sittikorn Saelor
Chonticha Mamimin
Nantharat Phruksaphithak

Abstract

The recalcitrant nature of the substrate often limits the anaerobic digestion of Empty Fruit Bunches (EFB). This study investigates the effectiveness of augmenting Thermoanaerobacterium thermosaccharolyticum PSU-2 for the pretreatment of EFB in mono-digestion and co-digestion with Palm Oil Mill Effluent (POME) to enhance biogas production. The augmented T. thermosaccharolyticum PSU-2 demonstrated enhanced cellulolytic and hemicellulolytic capabilities, resulting in improved biogas yield, methane content, and substrate degradation efficiency compared to the control without augmentation. Mono-digestion of EFB with the augmented strain at an S:I ratio of 15:1 achieved a methane yield of 35.13 ± 1.05 m³ CH₄/tonne, representing a 64.31 ± 1.17% improvement over the control. Co-digestion of EFB with POME using the augmented strain further enhanced the methane yield to 46.67 ± 1.40 m³ CH₄/tonne at an S:I ratio of 15:1, representing a 103.00 ± 2.81% improvement over the control. Kinetic analysis revealed improved hydrolysis rates and reduced lag phases in mono-digestion and co-digestion processes. Comparison with other pretreatment methods and energy balance and economic analysis indicated that co-digestion of EFB with POME using the augmented T. thermosaccharolyticum PSU-2 pretreatment is a promising, energy-efficient, and profitable approach for enhancing biogas production from EFB. This study highlights the potential of biological pretreatment using augmented bacterial strains to improve the valorization of agricultural waste streams through anaerobic digestion.

Article Details

Section
Research Articles

References

Surendra, K. C.; Sawatdeenarunat, C.; Shrestha, S.; Sung, S.; Khanal, S. K. Anaerobic digestion-based biorefinery for bioenergy and biobased products. Industrial Biotechnology 2015, 11(2), 103-112. https://doi.org/10.1089/ind.2015.0001

Aragaw, T.; Andargie, M.; Gessesse, A. Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums. International Journal of Physical Sciences 2013, 8(11), 443-450. doi:10.5897/IJPS2013.3863.

Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; et al. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresource Technology 2016, 199, 386-397. https://doi.org/10.1016/j.biortech.2015.09.007

Krishnan, S.; Singh, L.; Sakinah, M.; Thakur, S.; Wahid, Z. A.; Sohaili, J. Effect of organic loading rate on hydrogen (H2) and methane (CH4) production in two-stage fermentation under thermophilic conditions using palm oil mill effluent (POME). Energy for Sustainable Development 2016, 34, 130-138. https://doi.org/10.1016/j.esd.2016.07.002

Nieves, D. C.; Karimi, K.; Horváth, I. S. Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Industrial Crops and Products 2011, 34(1), 1097-1101. https://doi.org/10.1016/j.indcrop.2011.03.022

Amin, F. R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; et al. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7(1). https://doi.org/10.1186/s13568-017-0375-4

Paudel, S. R.; Banjara, S. P.; Choi, O. K.; Park, K. Y.; Kim, Y. M.; Lee, J. W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology 2017, 245, 1194-1205. https://doi.org/10.1016/j.biortech.2017.08.182

Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnology Advances 2009, 27(6), 1051-1060. https://doi.org/10.1016/j.biotechadv.2009.05.007

Tsapekos, P.; Kougias, P. G.; Treu, L.; Campanaro, S.; Angelidaki, I. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Applied Energy 2017, 185, 126-135. https://doi.org/10.1016/j.apenergy.2016.10.081

Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 2019, 12(6). https://doi.org/10.3390/en12061106

Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews 2017, 76(September), 1485-1496.. https://doi.org/10.1016/j.rser.2016.11.184

APHA, AWWA, W. Standard Methods for Examination of Water and Wastewater (22ND ED); Eugene W. Rice , Rodger B. Baird, Andrew D.Eaton, L. S. C., Ed.; washington, DC,USA 20001-3710, 2012. doi:ISBN 9780875532356.

Hiligsmann, S.; Masset, J.; Hamilton, C.; Beckers, L.; Thonart, P. Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria. Bioresource Technology 2011, 102(4), 3810-3818. https://doi.org/10.1016/j.biortech.2010.11.094

O-Thong, S.; Prasertsan, P.; Birkeland, N. K. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresource Technology 2009, 100(2), 909-918. https://doi.org/10.1016/j.biortech.2008.07.036

Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J. L.; Guwy, A. J.; et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology 2009, 59(5), 927-934. https://doi.org/10.2166/wst.2009.040

Trzcinski, A. P.; Stuckey, D. C. Determination of the Hydrolysis Constant in the Biochemical Methane Potential Test of Municipal Solid Waste. Environmental Engineering Science 2012, 29(9), 848-854. https://doi.org/10.1089/ees.2011.0105

Morris, D. L. Quantitative Determination of Carbohydrates with Dreywood's Anthrone Reagen; 1948. https://doi.org/10.1007/978-94-007-0753-5_100521

Sitorus, B.; Sukandar; Panjaitan, S. D. Biogas recovery from anaerobic digestion process of mixed fruit -vegetable wastes. Energy Procedia 2013, 32, 176-182. https://doi.org/10.1016/j.egypro.2013.05.023

Merklein, K.; Fong, S. S.; Deng, Y. Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochemical Engineering Journal 2014, 90, 239-244. https://doi.org/10.1016/j.bej.2014.06.012

Lü, F.; Bize, A.; Guillot, A.; Monnet, V.; Madigou, C.; Chapleur, O.; et al. Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME Journal 2014, 8(1), 88-102. https://doi.org/10.1038/ismej.2013.120

Wang, S.; Ma, Z.; Zhang, T.; Bao, M.; Su, H. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Frontiers of Chemical Science and Engineering 2017, 11(1), 100-106. https://doi.org/10.1007/s11705-017-1617-3

Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; et al. Towards a standardization of biomethane potential tests. Water Science and Technology 2016, 74(11), 2515-2522. https://doi.org/10.2166/wst.2016.336

Shi, X.; Lin, J.; Zuo, J.; Li, P.; Li, X.; Guo, X. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. Journal of Environmental Sciences (China) 2017, 55, 49-57. https://doi.org/10.1016/j.jes.2016.07.006

Suksong, W.; Kongjan, P.; Prasertsan, P.; O-Thong, S. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. Bioresource Technology 2019, 291(July), 121851. https://doi.org/10.1016/j.biortech.2019.121851

Prapinagsorn, W.; Sittijunda, S.; Reungsang, A. Co-digestion of napier grass and its silage with cow dung for methane production. Energies 2017, 10(10), 1-20.. https://doi.org/10.3390/en10101654

Muñoz, C.; Hidalgo, C.; Zapata, M.; Jeison, D.; Riquelme, C.; Rivas, M. Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Applied and Environmental Microbiology 2014, 80(14), 4199-4206. https://doi.org/10.1128/AEM.00827-14

Mustafa, A. M.; Poulsen, T. G.; Sheng, K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Applied Energy 2016, 180, 661-671. https://doi.org/10.1016/j.apenergy.2016.07.135

Saelor, S.; Kongjan, P.; O-Thong, S. Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches. Energy Procedia 2017, 138, 717-722. https://doi.org/10.1016/j.egypro.2017.10.206

Chaikitkaew, S.; Kongjan, P.; O-Thong, S. Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion; Elsevier B.V., 2015; Vol. 79. https://doi.org/10.1016/j.egypro.2015.11.575

Krishnan, Y.; Bong, C. P. C.; Azman, N. F.; Zakaria, Z.; Othman, N.; Abdullah, N.; et al. Co-composting of palm empty fruit bunch and palm oil mill effluent: Microbial diversity and potential mitigation of greenhouse gas emission. Journal of Cleaner Production 2017, 146, 94-100. https://doi.org/10.1016/j.jclepro.2016.08.118

Li, Q.; Gao, Y.; Wang, H.; Li, B.; Liu, C.; Yu, G.; et al. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresource Technology 2012, 125, 193-199. https://doi.org/10.1016/j.biortech.2012.08.095

Tadesse, H.; Luque, R. Advances on biomass pretreatment using ionic liquids: An overview. Energy and Environmental Science 2011, 4(10), 3913-3929. https://doi.org/10.1039/c0ee00667j

Brandt, A.; Gräsvik, J.; Hallett, J. P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry 2013, 15(3), 550-583. https://doi.org/10.1039/c2gc36364j

Costa, A. G.; Pinheiro, G. C.; Pinheiro, F. G. C.; Dos Santos, A. B.; Santaella, S. T.; Leitão, R. C. The use of thermochemical pretreatments to improve the anaerobic biodegradability and biochemical methane potential of the sugarcane bagasse. Chemical Engineering Journal 2014, 248, 363-372.. https://doi.org/10.1016/j.cej.2014.03.060

Jackowiak, D.; Bassard, D.; Pauss, A.; Ribeiro, T. Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresource Technology 2011, 102(12), 6750-6756. https://doi.org/10.1016/j.biortech.2011.03.107

Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews 2012, 16(3), 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035

Zhao, J.; Ge, X.; Vasco-Correa, J.; Li, Y. Fungal pretreatment of unsterilized yard trimmings for enhanced methane production by solid-state anaerobic digestion. Bioresource Technology 2014, 158, 248-252. https://doi.org/10.1016/j.biortech.2014.02.029

Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass - An overview. Bioresource Technology 2016, 199, 76-82. https://doi.org/10.1016/j.biortech.2015.08.030

Lizasoain, J.; Trulea, A.; Gittinger, J.; Kral, I.; Piringer, G.; Schedl, A.; et al. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds. Bioresource Technology 2017, 244(June), 949-956. https://doi.org/10.1016/j.biortech.2017.08.042

Baruah, J.; Nath, B. K.; Sharma, R.; Kumar, S.; Deka, R. C.; Baruah, D. C.; et al. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research 2018, 6(DEC), 1-19.. https://doi.org/10.3389/fenrg.2018.00141

He, Y.; Pang, Y.; Liu, Y.; Li, X.; Wang, K. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy and Fuels 2008, 22(4), 2775-2781. https://doi.org/10.1021/ef8000967

Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; et al. Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances 2018, 36(2), 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011

Siddique, M. N. I.; Wahid, Z. A. Achievements and perspectives of anaerobic co-digestion: A review. Journal of Cleaner Production 2018, 194, 359-371. https://doi.org/10.1016/j.jclepro.2018.05.155

Ullah Khan, I.; Hafiz Dzarfan Othman, M.; Hashim, H.; Matsuura, T.; Ismail, A. F.; Rezaei-DashtArzhandi, M.; et al. Biogas as a renewable energy fuel - A review of biogas upgrading, utilisation and storage. Energy Conversion and Management 2017, 150(May), 277-294. https://doi.org/10.1016/j.enconman.2017.08.035

Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; et al. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Applied Energy 2018, 226(May), 1219-1228. https://doi.org/10.1016/j.apenergy.2018.05.055