Valorization of Agro-industrial Solid Waste by Two-stage Anaerobic Digestion for Biohythane Production

Main Article Content

Jetsada Tawantum
Nantakan Muensit
Ponsit Sathapondecha
Chonticha Mamimin

Abstract

This study investigated the valorization of agro-industrial solid waste for biohythane production through a two-stage anaerobic digestion process. Seventeen waste samples were characterized, revealing diverse physico-chemical properties suitable for anaerobic digestion. The highest biohythane yields were obtained from waste-activated sludge (WAS) from a frozen convenience food wastewater treatment plant (895.63 mL/g VS), WAS from a processed chicken wastewater treatment plant (835.73 mL/g VS), and WAS from a municipal wastewater treatment plant (830.79 mL/g VS). Kinetic analysis using the modified Gompertz model provided insights into the biohythane production potential, with predicted yields ranging from 0 to 111.85 mL/g VS and production rates from 0 to 21.37 mL/d. The comparative analysis highlighted the superior biohythane production potential of the studied waste materials compared to other substrates, such as food waste (180.5 mL/g VS) and sugarcane bagasse (165.2 mL/g VS). The highest hydrogen and methane contents in the produced biohythane were 26.57% and 67.85%, respectively. The techno-economic assessment of scaled-up biohythane production demonstrated the economic feasibility, with a payback period of 2.05 years for a plant capacity of 100 ton waste/day, a biohythane yield of 500 m3/ton waste, and a biohythane production of 50,000 m3/day. The capital cost was estimated at 15 million USD, with an operating cost of 0.2 USD/m3 biohythane and a revenue of 0.6 USD/m3 from biohythane sales. The results of this study demonstrate the high potential of agro-industrial solid waste valorization for biohythane production and its contribution to sustainable waste management and renewable energy production.

Article Details

Section
Research Articles

References

U.S. Energy Information Administration. International Energy Outlook 2019. 2019. https://www.eia.gov /outlooks/ieo/

Intergovernmental Panel on Climate Change. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. 2018. https://www.ipcc.ch/sr15/

World Bank. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. 2018. https://openknowledge.worldbank.org/handle/10986/30317

Nguyen, D. D.; Chang, S. W.; Cha, J. H.; Jeong, S. Y.; Yoon, Y. S.; Lee, S. J.; Tran, M. C.; Ngo, H. H. Dry Semi-Continuous Anaerobic Digestion of Food Waste in the Mesophilic and Thermophilic Modes: New Aspects of Sustainable Management and Energy Recovery in South Korea. Energy Convers. Manag. 2017, 135, 445–452. https://doi.org/10.1016/j.enconman.2016.12.030.

Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032.

Jenkins, W.; Tucker, M. E.; Grim, J. Routledge Handbook of Religion and Ecology; 2016. https://doi.org/10.4324/9781315764788.

Suksong, W.; Kongjan, P.; Prasertsan, P.; Imai, T.; O-Thong, S. Optimization and Microbial Community Analysis for Production of Biogas from Solid Waste Residues of Palm Oil Mill Industry by Solid-State Anaerobic Digestion. Bioresour. Technol. 2016, 214, 166–174. https://doi.org/10.1016/j.biortech.2016.04.077.

Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P. N. L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of by-Products. Appl. Energy 2015, 144 (April), 73–95. https://doi.org/10.1016/j.apenergy.2015.01.045.

Liu, G.; Zhang, R.; El-Mashad, H. M.; Dong, R. Effect of Feed to Inoculum Ratios on Biogas Yields of Food and Green Wastes. Bioresour. Technol. 2009, 100(21), 5103–5108. https://doi.org/10.1016/j.biortech.2009.03.081.

Zhang, T.; Jiang, D.; Zhang, H.; Jing, Y.; Tahir, N.; Zhang, Y.; Zhang, Q. Comparative Study on Bio-Hydrogen Production from Corn Stover: Photo-Fermentation, Dark-Fermentation and Dark-Photo Co-Fermentation. Int. J. Hydrogen Energy 2020, 45 (6), 3807–3814. https://doi.org/10.1016/j.ijhydene.2019.04.170.

Nathao, C.; Sirisukpoka, U.; Pisutpaisal, N. Production of Hydrogen and Methane by One and Two Stage Fermentation of Food Waste. Int. J. Hydrogen Energy 2013, 38(35), 15764–15769. https://doi.org/10.1016/j.ijhydene.2013.05.047.

Sivagurunathan, P.; Anburajan, P.; Park, J. H.; Kumar, G.; Park, H. D.; Kim, S. H. Mesophilic Biogenic H2 Production Using Galactose in a Fixed Bed Reactor. Int. J. Hydrogen Energy 2017, 42(6), 3658–3666. https://doi.org/10.1016/j.ijhydene.2016.07.203.

APHA. Standard Methods for the Examination of Water and Wastewater. 2012, 1496. [14]Van Soest, P. J. Development of a Comprehensive System of Feed Analyses and Its Application to Forages. J. Anim. Sci. 1967, 26(1), 119–128. https://doi.org/10.2527/jas1967.261119x.

Mamimin, C.; Kongjan, P.; O-Thong, S.; Prasertsan, P. Enhancement of Biohythane Production from Solid Waste by Co-Digestion with Palm Oil Mill Effluent in Two-Stage Thermophilic Fermentation. Int. J. Hydrogen Energy 2019, 44(32), 17224–17237. https://doi.org/10.1016/j.ijhydene.2019.03.275.

Suksong, W.; Wongfaed, N.; Sangsri, B.; Kongjan, P.; Prasertsan, P.; Podmirseg, S. M.; Insam, H.; O-Thong, S. Enhanced Solid-State Biomethanisation of Oil Palm Empty Fruit Bunches Following Fungal Pretreatment. Ind. Crops Prod. 2020, 145 (January), 112099. https://doi.org/10.1016/j.indcrop.2020.112099.

Boshagh, F.; Rostami, K. A Review of Measurement Methods of Biological Hydrogen. Int. J. Hydrogen Energy 2020, 45(46), 24424–24452. https://doi.org/10.1016/j.ijhydene.2020.06.079.

Hniman, A.; Prasertsan, P.; O-Thong, S. Community Analysis of Thermophilic Hydrogen-Producing Consortia Enriched from Thailand Hot Spring with Mixed Xylose and Glucose. Int. J. Hydrogen Energy 2011, 36(21), 14217–14226. https://doi.org/10.1016/j.ijhydene.2011.05.087.

Trzcinski, A. P.; Stuckey, D. C. Determination of the Hydrolysis Constant in the Biochemical Methane Potential Test of Municipal Solid Waste. Environ. Eng. Sci. 2012, 29(9), 848–854. https://doi.org/10.1089/ees.2011.0105.

Raposo, F.; De La Rubia, M. A.; Fernández-Cegrí, V.; Borja, R. Anaerobic Digestion of Solid Organic Substrates in Batch Mode: An Overview Relating to Methane Yields and Experimental Procedures. Renew. Sustain. Energy Rev. 2012, 16(1), 861–877. https://doi.org/10.1016/j.rser.2011.09.008.

Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the Anaerobic Digestion of Food Waste for Biogas Production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038.

Maamri, S.; Amrani, M. Biogas Production from Waste Activated Sludge Using Cattle Dung Inoculums: Effect of Total Solid Contents and Kinetics Study. Energy Procedia 2014, 50, 352–359. https://doi.org/10.1016/j.egypro.2014.06.042.

Chen, Y.; Cheng, J. J.; Creamer, K. S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99 (10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057.

Ahring, B. K.; Sandberg, M.; Angelidaki, I. Volatile Fatty Acids as Indicators of Process Imbalance in Anaerobic Digestors. Appl. Microbiol. Biotechnol. 1995, 43(3), 559–565. https://doi.org/10.1007/s002530050451.

Gunaseelan, V. N. Anaerobic Digestion of Biomass for Methane Production: A Review. Biomass and Bioenergy 1997, 13 (1–2), 83–114. https://doi.org/10.1016/S0961-9534(97)00020-2.

Cirne, D. G.; Paloumet, X.; Björnsson, L.; Alves, M. M.; Mattiasson, B. Anaerobic Digestion of Lipid-Rich Waste-Effects of Lipid Concentration. Renew. Energy 2007, 32(6), 965–975. https://doi.org/10.1016/j.renene.2006.04.003.

Fernandes, T. V.; Klaasse Bos, G. J.; Zeeman, G.; Sanders, J. P. M.; van Lier, J. B. Effects of Thermo-Chemical Pre-Treatment on Anaerobic Biodegradability and Hydrolysis of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100(9), 2575–2579. https://doi.org/10.1016/j.biortech.2008.12.012.

Ling, Z., Wang, Y., Jian, S., Chen, Y., & Zou, S. Microbial Community Analysis and Performance of a Microbial Electrolysis Cell-Anaerobic Membrane Bioreactor with Different COD/SO42- Ratios. Bioresource Technology,. Bioresour. Technol. 2017, 244, 905-915.

Mohammadi, P., Ibrahim, S., Annuar, M. S. M., & Ghafari, S. Kinetic Study of the Fermentative Hydrogen Production by the Bacterium Clostridium Acetobutylicum. Bioprocess and Biosystems Engineering. Bioprocess Biosyst. Eng. 2016, 39(7), 1103-1115.

McInerney, M. J.; Sieber, J. R.; Gunsalus, R. P. Syntrophy in Anaerobic Global Carbon Cycles. Curr. Opin. Biotechnol. 2009, 20(6), 623–632. https://doi.org/10.1016/j.copbio.2009.10.001.

Ziels, R. M.; Sousa, D. Z.; Stensel, H. D.; Beck, D. A. C. DNA-SIP Based Genome-Centric Metagenomics Identifies Key Long-Chain Fatty Acid-Degrading Populations in Anaerobic Digesters with Different Feeding Frequencies. ISME J. 2018, 12(1), 112–123. https://doi.org/10.1038/ismej.2017.143.

Zhou, Y.; Zhang, Z.; Nakamoto, T.; Li, Y.; Yang, Y.; Utsumi, M.; Sugiura, N. Influence of Substrate-to-Inoculum Ratio on the Batch Anaerobic Digestion of Bean Curd Refuse-Okara under Mesophilic Conditions. Biomass and Bioenergy 2011, 35(7), 3251–3256. https://doi.org/10.1016/j.biombioe.2011.04.002.

Masset, J.; Calusinska, M.; Hamilton, C.; Hiligsmann, S.; Joris, B.; Wilmotte, A.; Thonart, P. Fermentative Hydrogen Production from Glucose and Starch Using Pure Strains and Artificial Co-Cultures of Clostridium Spp. Biotechnol. Biofuels 2012, 5, 1–15. https://doi.org/10.1186/1754-6834-5-35.

Jiang, L., Wu, H., Xu, H., & Zhao, G. A Two-Stage Process for Hydrogen and Methane Production from the Organic Fraction of Municipal Solid Waste. Int. J. Hydrogen Energy 2018, 43(30), 13808-13817.

Kato, S.; Yoshida, R.; Yamaguchi, T.; Sato, T.; Yumoto, I.; Kamagata, Y. The Effects of Elevated CO2 Concentration on Competitive Interaction between Aceticlastic and Syntrophic Methanogenesis in a Model Microbial Consortium. Front. Microbiol. 2014, 5(OCT), 1–8. https://doi.org/10.3389/fmicb.2014.00575.

Dyksma, S.; Jansen, L.; Gallert, C. Syntrophic Acetate Oxidation Replaces Acetoclastic Methanogenesis during Thermophilic Digestion of Biowaste. Microbiome 2020, 8(1), 1–14. https://doi.org/10.1186/s40168-020-00862-5.

Sun, L.; Liu, T.; Müller, B.; Schnürer, A. The Microbial Community Structure in Industrial Biogas Plants Influences the Degradation Rate of Straw and Cellulose in Batch Tests. Biotechnol. Biofuels 2016, 9(1), 1–20. https://doi.org/10.1186/s13068-016-0543-9.

Smith, K. S.; Ingram-Smith, C. Methanosaeta, the Forgotten Methanogen? Trends Microbiol. 2007, 15(4), 150–155. https://doi.org/10.1016/j.tim.2007.02.002.

De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The Rediscovered Methanogen for Heavy Duty Biomethanation. Bioresour. Technol. 2012, 112, 1–9. https://doi.org/10.1016/j.biortech.2012.02.079.

Yenigün, O.; Demirel, B. Ammonia Inhibition in Anaerobic Digestion: A Review. Process Biochem. 2013, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012.

Nobu, M. K.; Narihiro, T.; Rinke, C.; Kamagata, Y.; Tringe, S. G.; Woyke, T.; Liu, W. T. Microbial Dark Matter Ecogenomics Reveals Complex Synergistic Networks in a Methanogenic Bioreactor. ISME J. 2015, 9(8), 1710–1722. https://doi.org/10.1038/ismej.2014.256.

Kouzuma, A.; Kato, S.; Watanabe, K. Microbial Interspecies Interactions: Recent Findings in Syntrophic Consortia. Front. Microbiol. 2015, 6 (MAY), 1–8. https://doi.org/10.3389/fmicb.2015.00477.

Luo, G.; De Francisci, D.; Kougias, P. G.; Laura, T.; Zhu, X.; Angelidaki, I. New Steady-State Microbial Community Compositions and Process Performances in Biogas Reactors Induced by Temperature Disturbances. Biotechnol. Biofuels 2015, 8 (1), 1–10. https://doi.org/10.1186/s13068-014-0182-y.

Schmidt, A.; Müller, N.; Schink, B.; Schleheck, D. A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas Wolfei. PLoS One 2013, 8(2). https://doi.org/10.1371/journal.pone.0056905.

Elbeshbishy, E.; Dhar, B. R.; Nakhla, G.; Lee, H. S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation. Renew. Sustain. Energy Rev. 2017, 79(May), 656–668. https://doi.org/10.1016/j.rser.2017.05.075.

Khan, M. A.; Ngo, H. H.; Guo, W. S.; Liu, Y.; Nghiem, L. D.; Hai, F. I.; Deng, L. J.; Wang, J.; Wu, Y. Optimization of Process Parameters for Production of Volatile Fatty Acid, Biohydrogen and Methane from Anaerobic Digestion. Bioresour. Technol. 2016, 219, 738–748. https://doi.org/10.1016/j.biortech.2016.08.073.

Bundhoo, M. A. Z.; Mohee, R.; Hassan, M. A. Effects of Pre-Treatment Technologies on Dark Fermentative Biohydrogen Production: A Review. J. Environ. Manage. 2015, 157, 20–48. https://doi.org/10.1016/j.jenvman.2015.04.006.

Saady, N. M. C. Homoacetogenesis during Hydrogen Production by Mixed Cultures Dark Fermentation: Unresolved Challenge. Int. J. Hydrogen Energy 2013, 38(30), 13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122.

Ren, N. Q.; Zhao, L.; Chen, C.; Guo, W. Q.; Cao, G. L. A Review on Bioconversion of Lignocellulosic Biomass to H2: Key Challenges and New Insights. Bioresour. Technol. 2016, 215, 92–99. https://doi.org/10.1016/j.biortech.2016.03.124.

Lay, C. H.; Sen, B.; Chen, C. C.; Wu, J. H.; Lee, S. C.; Lin, C. Y. Co-Fermentation of Water Hyacinth and Beverage Wastewater in Powder and Pellet Form for Hydrogen Production. Bioresour. Technol. 2013, 135, 610–615. https://doi.org/10.1016/j.biortech.2012.06.094.

Wang, J.; Wan, W. Kinetic Models for Fermentative Hydrogen Production: A Review. Int. J. Hydrogen Energy 2009, 34(8), 3313–3323. https://doi.org/10.1016/j.ijhydene.2009.02.031.

Goswami, R.; Chattopadhyay, P.; Shome, A.; Banerjee, S. N.; Chakraborty, A. K.; Mathew, A. K.; Chaudhury, S. An Overview of Physico-Chemical Mechanisms of Biogas Production by Microbial Communities: A Step towards Sustainable Waste Management. 3 Biotech 2016, 6(1), 1–12. https://doi.org/10.1007/s13205-016-0395-9.

Li, W.; Siddhu, M. A. H.; Amin, F. R.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Methane Production through Anaerobic Co-Digestion of Sheep Dung and Waste Paper. Energy Convers. Manag. 2018, 156 (May 2017), 279–287. https://doi.org/10.1016/j.enconman.2017.08.002.

Kafle, G. K.; Kim, S. H.; Sung, K. I. Ensiling of Fish Industry Waste for Biogas Production: A Lab Scale Evaluation of Biochemical Methane Potential (BMP) and Kinetics. Bioresour. Technol. 2013, 127, 326–336. https://doi.org/10.1016/j.biortech.2012.09.032.

Mudhoo, A. Biogas Production: Pretreatment Methods in Anaerobic Digestion. Biogas Prod. Pretreat. Methods Anaerob. Dig. 2012. https://doi.org/10.1002/9781118404089.

Goux, X.; Calusinska, M.; Lemaigre, S.; Marynowska, M.; Klocke, M.; Udelhoven, T.; Benizri, E.; Delfosse, P. Microbial Community Dynamics in Replicate Anaerobic Digesters Exposed Sequentially to Increasing Organic Loading Rate, Acidosis, and Process Recovery. Biotechnol. Biofuels 2015, 8(1), 1–18. https://doi.org/10.1186/s13068-015-0309-9.

Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of Feedstock Pretreatment Strategies for Improved Anaerobic Digestion: From Lab-Scale Research to Full-Scale Application. Bioresour. Technol. 2016, 199, 386–397. https://doi.org/10.1016/j.biortech.2015.09.007.

Kafle, G. K.; Chen, L. Comparison on Batch Anaerobic Digestion of Five Different Livestock Manures and Prediction of Biochemical Methane Potential (BMP) Using Different Statistical Models. Waste Manag. 2016, 48, 492–502. https://doi.org/10.1016/j.wasman.2015.10.021.

Zhen, G.; Lu, X.; Kobayashi, T.; Kumar, G.; Xu, K. Anaerobic Co-Digestion on Improving Methane Production from Mixed Microalgae (Scenedesmus Sp., Chlorella Sp.) and Food Waste: Kinetic Modeling and Synergistic Impact Evaluation. Chem. Eng. J. 2016, 299, 332–341. https://doi.org/10.1016/j.cej.2016.04.118.

Mamimin, C.; Singkhala, A.; Kongjan, P.; Suraraksa, B.; Prasertsan, P.; Imai, T.; O-Thong, S. Two-Stage Thermophilic Fermentation and Mesophilic Methanogen Process for Biohythane Production from Palm Oil Mill Effluent. Int. J. Hydrogen Energy 2015, 40(19), 6319–6328. https://doi.org/10.1016/j.ijhydene.2015.03.068.

Yin, Y.; Liu, Y. J.; Meng, S. J.; Kiran, E. U.; Liu, Y. Enzymatic Pretreatment of Activated Sludge, Food Waste and Their Mixture for Enhanced Bioenergy Recovery and Waste Volume Reduction via Anaerobic Digestion. Appl. Energy 2016, 179, 1131–1137. https://doi.org/10.1016/j.apenergy.2016.07.083.

Wang, Y.; Li, G.; Chi, M.; Sun, Y.; Zhang, J.; Jiang, S.; Cui, Z. Effects of Co-Digestion of Cucumber Residues to Corn Stover and Pig Manure Ratio on Methane Production in Solid State Anaerobic Digestion. Bioresour. Technol. 2018, 250(September 2017), 328–336. https://doi.org/10.1016/j.biortech.2017.11.055.