Metabolite Profiling and Morphological Screening of C. militaris Fruiting Bodies Extracts using UHPLC-QTOF-IMS and GC-MS Analysis
Main Article Content
Abstract
The medicinal mushroom C. militaris has several health advantages and has been utilized for many years throughout Asia as a component of traditional medicine systems. It can be used as a functional food and in nutraceutical products. This study investigated the morphological characteristics of C. militaris during the large-scale cultivation and metabolic profiling of the ethanolic and aqueous extracts of their fruiting bodies. The cultural and morphological characteristics of C. militaris were studied during the growth of this mushroom in terms of production of mycelial growth and fruiting bodies by conventional microbiological techniques. Cordycepin content in the aqueous and ethanol extracts of fruiting bodies was evaluated using UHPLC-QTOF-IMS analysis. The detection of metabolites in the ethanol extract was done by GC-MS analysis. The cordycepin content in the ethanol and aqueous extracts of the fruiting bodies was found to be 16.92 mg/g and 10.88 mg/g, respectively. GC-MS spectra analysis of the C. militaris fruiting bodies ethanolic extracts indicated the existence of eighteen metabolites such as 3,4-Dihydroxymandelic acid-terms, n-Hexadecanoic acid, Ethyl pentadecanoate, 1, E-11, Z-13-Octadecatriene, 9,12-Octadecadienoic acid (Z, Z)-, I-9-Octadecenoic acid ethyl ester, 9,12-Octadecadienoic acid (Z, Z)-, Trimethyls, 9(11)-Dehydroergosterol tosylate, Ergosterol, Silane, (phenyloxiranylidene) bis[trimethy, Neophytadiene, 1-Octadecyne, n-Hexadecanoic acid, Ethyl 9-hexadecenoate, 2,5-Diiodo-9-oxabicyclo [4.2.1] nonane, i-Propyl 9,12,15-octadecatrienoate, Ergosta-4,7,22-trien-3.beta.-ol, and TMS Palmitic acid. Evaluating cordycepin content and other bio components of C. militaris will help exploit this mushroom for potential medicinal benefits and develop reasonable quality pharmaceutical, nutraceutical, and functional food products.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Raethong, N.; Wang, H.; Nielsen, J.; Vongsangnak, W. Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Computational and structural biotechnology journal. 2020, 18, 1-8. https://doi.org/10.1016/j.csbj.2019.11.003
Lo, H.-C.; Wasser, S. P. Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems. International journal of medicinal mushrooms. 2011, 13(5). https://doi.org/10.1615/IntJMedMushr.v13.i5.10
Smith, J. E.; Rowan, N. J.; Sullivan, R. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnology letters. 2002, 24, 1839-1845. https://doi.org/10.1023/A:1020994628109
Jin, Y.; Meng, X.; Qiu, Z.; Su, Y.; Yu, P.; Qu, P. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi journal of biological sciences. 2018, 25(5), 991-995. https://doi.org/10.1016/j.sjbs.2018.05.016
Won, S.-Y.; Park, E.-H. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. Journal of ethnopharmacology. 2005, 96(3), 555-561. https://doi.org/10.1016/j.jep.2004.10.009
Phull, A.-R.; Ahmed, M.; Park, H.-J. Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms. 2022, 10(2), 405. https://doi.org/10.3390/microorganisms10020405
Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelha, R. C.; Ferreira, I. C. F. R.; Soković, M.; Van Griensven, L. J. L. D. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal "mushroom". Journal of ethnopharmacology. 2015, 162, 323-332. https://doi.org/10.1016/j.jep.2014.12.069
Kim, Y. O.; Kim, H. J.; Abu-Taweel, G. M.; Oh, J.; Sung, G.-H. Neuroprotective and therapeutic effect of Cordyceps militaris on ischemia-induced neuronal death and cognitive impairments. Saudi journal of biological sciences. 2019, 26(7), 1352-1357. https://doi.org/10.1016/j.sjbs.2018.08.011
Govindula, A.; Pai, A.; Baghel, S.; Mudgal, J. Molecular mechanisms of cordycepin emphasizing its potential against neuroinflammation: An update. European journal of pharmacology. 2021, 908, 174364. https://doi.org/10.1016/j.ejphar.2021.174364
Cui, J. D. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Critical reviews in biotechnology. 2015, 35(4), 475-484. https://doi.org/10.3109/07388551.2014.900604
Kim, S. B.; Ahn, B.; Kim, M.; Ji, H.-J.; Shin, S.-K.; Hong, I. P.; Kim, C. Y.; Hwang, B. Y.; Lee, M. K. Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. Journal of ethnopharmacology. 2014, 151(1), 478-484. https://doi.org/10.1016/j.jep.2013.10.064
Joshi, R.; Sharma, A.; Thakur, K.; Kumar, D.; Nadda, G. Metabolite analysis and nucleoside determination using reproducible UHPLC-Q-ToF-IMS in Ophiocordyceps sinensis. Journal of Liquid Chromatography & Related Technologies. 2018, 41(15-16), 927-936. https://doi.org/10.1080/10826076.2018.1541804
Nagarajan, A. J.; Irusappan, S.; Amarnath, G.; Bk, S. A.; Babu, J. V.; Harishankar, M. K.; Devi, A. Expeditious synthesis of silver nanoparticles by a novel strain Sporosarcina pasteurii SRMNP1 and patrocladogram analysis for exploration of its closely related species. Int. J. Sci. Res. 2014, 3(2), 63-65. https://doi.org/10.15373/22778179/FEB2014/45
Wang, H.-J.; Pan, M.-C.; Chang, C.-K.; Chang, S.-W.; Hsieh, C.-W. Optimization of ultrasonic-assisted extraction of cordycepin from Cordyceps militaris using orthogonal experimental design. Molecules. 2014, 19(12), 20808-20820. https://doi.org/10.3390/molecules191220808
Das, S. K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 2010, 81(8), 961-968. https://doi.org/10.1016/j.fitote.2010.07.010
Shrestha, B.; Han, S.-K.; Yoon, K.-S.; Sung, J.-M. Morphological characteristics of conidiogenesis in Cordyceps militaris. Mycobiology. 2005, 33(2), 69-76. https://doi.org/10.4489/MYCO.2005.33.2.069
Jędrejko, K. J.; Lazur, J.; Muszyńska, B. Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods. 2021, 10(11), 2634. https://doi.org/10.3390/foods10112634
Kang, N.; Lee, H.-H.; Park, I.; Seo, Y.-S. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology. 2017, 45 (1), 31-38. https://doi.org/10.5941/MYCO.2017.45.1.31
Jedrejko, K.; Kała, K.; Sułkowska-Ziaja, K.; Krakowska, A.; Zieba, P.; Marzec, K.; Szewczyk, A.; Sekara, A., Pytko-Polo nczyk, J.; Muszy nska, B. Cordyceps militaris-Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet. Antioxidants 2022, 11, 1861. s Note: MDPI stays neutral with regard to jurisdictional claims in published …: 2022. https://doi.org/10.3390/antiox11101861
Wang, X.; Liu, F.; Li, F.; Cai, H.; Sun, W.; Chen, X.; Gao, H.; Shen, W. Determination of cordycepin content of Cordyceps militaris recombinant rice by high performance liquid chromatography. Tropical Journal of Pharmaceutical Research. 2016, 15(10), 2235-2239. https://doi.org/10.4314/tjpr.v15i10.23
Huang, L.; Li, Q.; Chen, Y.; Wang, X.; Zhou, X. Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. Afr J Microbiol Res. 2009, 3(12), 957-961.
Chen, Y.-M.; Sung, H.-C.; Kuo, Y.-H.; Hsu, Y.-J.; Huang, C.-C.; Liang, H.-L. The Effects of Ergosta-7, 9 (11), 22-trien-3β-ol from Antrodia camphorata on the Biochemical Profile and Exercise Performance of Mice. Molecules. 2019, 24(7), 1225. https://doi.org/10.3390/molecules24071225
Choi, J.; Paje, L. A.; Kwon, B.; Noh, J.; Lee, S. Quantitative analysis of cordycepin in Cordyceps militaris under different extraction methods. Journal of Applied Biological Chemistry. 2021, 64 (2), 153-158. https://doi.org/10.3839/jabc.2021.022
Singpoonga, N.; Rittiron, R.; Seang-On, B.; Chaiprasart, P.; Bantadjan, Y. Determination of adenosine and cordycepin concentrations in Cordyceps militaris fruiting bodies using near-infrared spectroscopy. ACS omega. 2020, 5(42), 27235-27244. https://doi.org/10.1021/acsomega.0c03403
Chen, L.-h.; Wu, Y.; Guan, Y.-m.; Jin, C.; Zhu, W.-f.; Yang, M. Analysis of the high-performance liquid chromatography fingerprints and quantitative analysis of multicomponents by single marker of products of fermented Cordyceps sinensis. Journal of Analytical Methods in Chemistry. 2018, 2018. https://doi.org/10.1155/2018/5943914
Kaushik, V.; Singh, A.; Arya, A.; Sindhu, S. C.; Sindhu, A.; Singh, A. Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions. Biotechnology Reports. 2020, 28, e00557. https://doi.org/10.1016/j.btre.2020.e00557
Vats, S.; Gupta, T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and molecular biology of plants. 2017, 23, 239-248. https://doi.org/10.1007/s12298-016-0407-6
Oh, T.-J.; Hyun, S.-H.; Lee, S.-G.; Chun, Y.-J.; Sung, G.-H.; Choi, H.-K. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions. PLoS One. 2014, 9(3), e90823. https://doi.org/10.1371/journal.pone.0090823
Zhang, H.; Li, Y.; Mi, J.; Zhang, M.; Wang, Y.; Jiang, Z.; Hu, P. GC-MS profiling of volatile components in different fermentation products of Cordyceps sinensis mycelia. Molecules. 2017, 22(10), 1800. https://doi.org/10.3390/molecules22101800
Lee, Y. S.; Kang, M. H.; Cho, S. Y.; Jeong, C. S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Archives of pharmacal research. 2007, 30, 436-443. https://doi.org/10.1007/BF02980217
Ley, J. P.; Engelhart, K.; Bernhardt, J.; Bertram, H.-J. 3, 4-Dihydroxymandelic acid, a noradrenalin metabolite with powerful antioxidative potential. Journal of agricultural and food chemistry. 2002, 50(21), 5897-5902. https://doi.org/10.1021/jf025667e
Aparna, V.; Dileep, K. V.; Mandal, P. K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chemical biology & drug design. 2012, 80(3), 434-439. https://doi.org/10.1111/j.1747-0285.2012.01418.x
Lloyd, C.; Wong, M. W. K.; Sin, L. J.; Manickavasagam, P. P.; Gunasekaran, S.; Yue, S. R.; Goh, F. M. E.; Manoharan, R. T.; Kong, H. Y.; Ang, J. Z. Y. Antimicrobial potential of Chlorella sorokiniana on MRSA-An in vitro study and an in silico analysis on ClpP protease. Journal of King Saud University-Science. 2023, 35 (5), 102668. https://doi.org/10.1016/j.jksus.2023.102668
Aguoru, C. U.; Bashayi, C. G.; Ogbonna, I. O. Phytochemical profile of stem bark extracts of Khaya senegalensis by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. 2017, 9(3), 35-43. https://doi.org/10.5897/JPP2016.0416. https://doi.org/10.5897/JPP2016.0416
Manilal, A.; Sujith, S.; Kiran, G. S.; Selvin, J.; Shakir, C. Cytotoxic potentials of red alga, Laurencia brandenii collected from the Indian coast. Global J Pharmacol. 2009, 3(2), 90-94.
Pu, Z.-H.; Zhang, Y.-q.; Yin, Z.-q.; Jiao, X. U.; Jia, R.-y.; Yang, L. U.; Fan, Y. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3, 4-diyl ester from neem oil. Agricultural Sciences in China. 2010, 9(8), 1236-1240. https://doi.org/10.1016/S1671-2927(09)60212-1
Ubaid, J. M.; Kadhim, M. J.; Hameed, I. H. Study of bioactive methanolic extract of Camponotus fellah using Gas chromatography-mass spectrum. International Journal of Toxicological and Pharmacological Research. 2016, 8(6), 434-439.
Bard, M.; Lees, N. D.; Turi, T.; Craft, D.; Cofrin, L.; Barbuch, R.; Koegel, C.; Loper, J. C. Sterol synthesis and viability oferg11 (cytochrome P450 lanosterol demethylase) mutations inSaccharomyces cerevisiae andCandida albicans. Lipids. 1993, 28(11), 963-967. https://doi.org/10.1007/BF02537115
Lalitharani, S.; Mohan, V. R.; Regini, G. S. GC-MS analysis of ethanolic extract of Zanthoxylum rhetsa (roxb.) dc spines. J Herbal Med Toxicol. 2010, 4(1), 191-192.
Mishra, P. M.; Sree, A. Antibacterial activity and GCMS analysis of the extract of leaves of Finlaysonia obovata (a mangrove plant). 2007. https://doi.org/10.3923/ajps.2007.168.172
Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: physiological role, metabolism and nutritional implications. Frontiers in physiology. 2017, 8, 306122. https://doi.org/10.3389/fphys.2017.00902