The Impact of Different Colors of Light-Emitting Diodes on Cacti Germination and Seedling Growth
Main Article Content
Abstract
To identify suitable light colors to break seed dormancy and enhance the growth of cactus seedlings. A short photoperiod and less light intensity affect seedlings, resulting in low germination and slow growth. Four cacti species are A. asterias, E. grusonii, M. geometrizans, and T. alonsoi, commonly grown as ornamental plants. The completely randomized design was experimental. The plant was cultured under the five different colors of light-emitting diodes (LEDs): natural light (NL), red, blue, green, and white LED, providing light for 12 hours/day. The results found that all cactus seeds can absorb water and have more than 50% viability, except for E. grusonii. The seed germination (%G) increased in NL and various colors of LED. White LED had the highest %G in A. asterias, but green LED had the highest α-amylase activity. In E. grusonii, M. geometrizans, and T. alonsoi, %G and α-amylase activity were the highest under red LED. In addition, all four cacti species had the lowest mean germination time under red LED. The growth of A. asterias and M. geometrizans had the highest seedling vigor, stem diameter, plant height, and root length under NL. They had the highest chlorophyll a and chlorophyll b. In E. grusonii and T. alonsoi under NL, with the highest stem diameter, plant height and increases chlorophyll a and chlorophyll b. However, white light has the maximum root length and seedling vigor. Thus, red, green, and white LEDs effectively break seed dormancy, while white LEDs stimulate cactus growth as the natural light.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Korotkova, N.; Aquino, D.; Arias, S.; Eggli, U.; Franck, A.; Gómez-Hinostrosa, C.; Guerrero, P.; Hernández, H.; Kohlbecker, A.; Köhler, M.; Luther, K.; Majure, L.; Müller, A.; Metzing, D.; Nyffeler, R.; Sánchez, D.; Schlumpberger, B.; Berendsohn, W. Cactaceae at caryophyllales.org- a dynamic online species-level taxonomic backbone for the family. BGBM. 2021, 51(2), 251-270. https://doi.org/10.3372/wi.51.51208
Catherine, R.; Donaldson, J.; Hudson, A.; McGough, H.N.; Sajeva, M.; Schippmann, U.; Laurence, M.T. Cites and cycads UNEP-WCMC: Cambridge, UK, 2012, 35-40.
Flores, J.; Jurado, E.; Jiménez-Bremont, J.F. Breaking seed dormancy in specially protected Turbinicarpus lophophoroides and Turbinicarpus pseudopectinatus (Cactaceae). Plant Species Biol. 2008, 23(1), 43-46. https://doi.org/10.1111/j.1442-1984.2008.00206.x
Rojas-Aréchiga, M.; Vázquez-Yanes, C. Cactus seed germination: A review. J Arid Environ. 2000, 44, 85-104. https://doi.org/10.1006/jare.1999.0582
Rojas-Aréchiga, M.; García-Morales, E. Dormancy and viability of Ferocactus peninsulae (Cactaceae) seeds. Plant Species Biol. 2022, 37(2), 1-9. https://doi.org/10.1111/1442-1984.12365
Ochoa, M.J.; González-Flores, L.M.; Cruz-Rubio, J.M.; Portillo, L.; Gómez-Leyva, J.F. Effect of substrate and gibberellic acid (GA3) on seed germination in ten cultivars of Opuntia sps. J Prof Assoc Cactus. 2015, 17, 50-60. https://doi.org/10.56890/jpacd.v17i.61
Cruz, L.S.; Pournavab, R.F.; Jiménez, L.D.; Hernández-Piñero, J.L.; Parra, A.C.; Avila, M.C. Seed germination and seedling survival of six cacti species using natural zeolite as substrate. Int J Curr Res Rev. 2014, 2(98), 81-91.
Flores, J.; González-Salvatierra, C.; Jurado, E. Effect of light on seed germination and seedling shape of succulent species from Mexico. J Plant Ecol. 2016, 9, 174-179. https://doi.org/10.1093/jpe/rtv046
He, J.; Qin, L.; Chong, E.L.C.; Choong, T.; Lee S.K. Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different Blue and Red LEDs. Front Plant Sci. 2017, 8, 361. https://doi.org/10.3389/fpls.2017.00361
Chory, J.; Cook, R.K.; Elich, T.; Fankhauser, C.; Li, J.; Nagpal, P.; Neff, M.; Pepper, A.; Poole, D.; Reed, J.; Vitart, V. From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acad Sci USA. 1996, 93, 12066-12071. https://doi.org/10.1073/pnas.93.22.12066
Izzo, L.; Mele, B.H.; Vitale, L.; Vitale, E.; Arena, C. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environ Exp Bot. 2020, 179, 104195. https://doi.org/10.1016/j.envexpbot.2020.104195
Wang, G.; Chen, Y.; Fan, H.; Huang, P. Effects of light-emitting diode (LED) red and blue light on the growth and photosynthetic characteristics of Momordica charantia L. JACEN. 2021, 10(1), 1-15. https://doi.org/10.4236/jacen.2021.101001
Shinomura, T.; Nagatani, A., Hanzawa, H.; Kubota, M.; Watanabe, M.; Furuya, M. Action spectra for phytochrome A-and B-specific photoinduction of seed germination in Arabidopsis thaliana. PNAS. 1996, 93(15), 8129-8133. https://doi.org/10.1073/pnas.93.15.8129
Organismal Biology: Plant Hormones and Sensory Systems. Available online: https://organismalbio.biosci.gatech.edu /chemical-and-electrical-signals/plant-hormones-and-sensory-systems/ (10 June 2024).
Stirbet, A.; Lazár, D.; Guo, Y. Photosynthesis: Basics, History, and Modeling. Ann. Bot. 2019, 126(4), 511-537. https://doi.org/10.1093/aob/mcz171
Benitez-Rodríguez, J.L.; Orozco-Segovia, A.; Rojas-Aréchiga, M. Light Effect on seed germination of four Mammillaria species from the Tehuacán-Cuicatlán Valley, Central Mexico. Southwest Nat. 2004, 49(1), 11-17. https://doi.org/10.1894/0038-4909(2004)049<0011:LEOSGO>2.0.CO;2
Simão, E.; Nakamura, A.T.; Takaki, M. The germination of seeds of Epiphyllum phyllanthus (L.) Haw. (Cactaceae) is controlled by phytochrome and by nonphytochrome related process. Biota Neotrop. 2010, 10, 115-119. https://doi.org/10.1590/S1676-06032010000100011
Alves, C.F.G.; Daibes, L.F.; dos Santos Barbosa, F.; Moura, F.B.; Vieira Silva, J. Physiological and biochemical alterations driven by light quality during germination and initial growth of the mandacaru cactus (Cereus jamacaru DC.). BRAZ J BOT. 2024, 47(1), 55-65. https://doi.org/10.1007/s40415-023-00972-y
Yang, X.Y.; Pritchard, H.W. Stimulatory and inhibitory effects of light on Cereus repandus (Cactaceae) seed germination are strongly dependent on spectral quality. Seed Sci. Res. 2022, 32(3), 166-174. https://doi.org/10.1017/S0960258522000150
Jala, A. Effects of different light treatments on the germination of Nepenthes mirabilis. ITJEMAST. 2011, 2, 83-91.
Raising cactus from seed. Available online: https://cactiguide.com/article/?article=article21.php. (10 June 2024). [22] Seo, M.; Nambara, E.; Choi, G.; Yamaguchi, S. Interaction of light and hormone signals in germinating seeds. Plant Mol Biol. 2008, 69(4), 463-472. https://doi.org/10.1007/s11103-008-9429-y
Rojas-Aréchiga, M.; Orozco-Segovia, A.; Vázquez-Yanes, C. Effect of light on germination of seven species of cacti from the Zapotitlan Valley in Puebla, México. J Arid Environ. 1997, 36, 571-8. https://doi.org/10.1006/jare.1996.0218
Use of LED lights for growing cactus. Available online: https://www.drygrow.org/use-of-led-lights-for-growing-cactus/ (10 June 2024).
Horibe, T.; Hamasaki, S.; Junki, O.; Matsuo, A.; Teranobu, R.; Hasegawa, S. Red and blue light ratio affects the growth and quality of edible cactus (Nopalea cochenillifera). J Prof Assoc Cactus. 2019, 21, 71-86. https://doi.org/10.56890/jpacd.v21i.8
Horibe, T.; Imai, S.; Matsuoka, T. Effects of light wavelength on daughter cladode growth and quality in edible cactus Nopalea cochenillifera Cultured in a Plant Factory with Artificial Light. J. Hort. Res. 2018, 26(2), 71-80. https://doi.org/10.2478/johr-2018-0018
Lima, A.T.; Meiada, M.V. Discontinuous hydration alters seed germination under stress of two populations of cactus that occur in different ecosystems in Northeast Brazil. Seed Sci Res. 2017, 27(4), 1-11. https://doi.org/10.1017/S0960258517000241
Assis, J.G.A.; Pérez-garcia, F.; Gonzáles-benito, M.E. Tetrazolium test for seed viability of Melocactus ernestii Vaupel subsp. ernestii and Melocactus zehntneri (Britton & Rose) Luetzelb. (Cactaceae). Gaia. 2015, 9(2), 15-16.
Bernfeld, P. Amylase α and β. Meth Enzymol. 1955, 1, 149-158. https://doi.org/10.1016/0076-6879(55)01021-5
Ghoochani, R.; Riasat, M.; Rahimi, S.; Rahmani, A. Biochemical and physiological characteristic changes of wheat cultivars under arbuscular mycorrhizal symbiosis and salinity stress. BFIJ. 2015, 7(2), 1-9.
Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. JProcRSNSW. 2005, 138, 65-75. https://doi.org/10.5962/p.361564
Al-Ansari, F.; Ksiksi, T. A quantitative assessment of germination parameters: the case of Crotalaria Persica and Tephrosia Apollinea. Open J Ecol. 2016, 9(1), 13-21. https://doi.org/10.2174/1874213001609010013
Ellis, R.H.; Robert, E.H. Improved equations for the prediction of seed longevity. Ann Bot. 1980, 45(1), 13-30. https://doi.org/10.1093/oxfordjournals.aob.a085797
Association of Official Seed Analysts. Rules for seed testing. Seed Sci Technol. 1978, 3, 29.
Organismal Biology: Plant Hormones and Sensory Systems. Available online: https://organismalbio.biosci. gatech.edu/chemical-and-electrical-signals/plant-hormones-and-sensory-systems/ (10 June 2024).
Lal, N.; Sachan, P. Effect of different visible light wavelengths on seed germination and photosynthetic pigment conlents in Vigua unguiculata (L.) Walp. IJB. 2017, 4(2), 132-136.
Cacti in Depth: Special consideration for seedlings. Available online: https://cactiguide.com/article/ ?article=article17.php (10 June 2024).
Dangudom, K.; Wandee, Y.; Chatpangta, W.; Boonyaras, P.; Boonpang, S. Effect of light spectrum on cactus germination and growth. PSRU J Sci Tech. 2022, 7(2), 114-125.