Image Based Papaya (Carica Papaya Linn.) seed germination evaluation by ResNet50
Main Article Content
Abstract
The researchers developed a papaya seed germination evaluation system (PSGES) using ResNet50, a convolutional neural network, to evaluate papaya seed germination potential from single seed images. Using a comprehensive dataset of 12,600 papaya seed images, they allocated 11,600 images for training (with an 80/20 training-testing split) and 1,000 images for validation. The system achieved impressive performance metrics, with an overall accuracy of 99.58% and an average processing time of 1.4705 seconds per image. The training dataset demonstrated exceptional performance with 0.9958 accuracy, 0.9980 precision, 0.9972 recall, and 0.9976 F1-score. When compared to existing seed evaluation methods in the literature, PSGES showed superior precision at 99.59%, significantly outperforming Rice (ANN) at 92.80%, Beet (NIR) at 89.00%, and Chili (ANN) at 71.71%. The study revealed a papaya seed germination rate of 84.92%, calculated from (10,000 + 20 + 677 + 3) ÷ 12,600 × 100. Notably, ResNet50 demonstrated superior performance compared to six other CNN architectures tested, including AlexNet, GoogLeNet, Inceptionv3, ResNet18, ResNet101, and VGG16, in both training and validation performance metrics.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Burns, p.; Saengmanee, P.; Utkhao, W.; Terdwongworakul, A.; Thaipong, K.; Doung-Ngern, U.; Siripanich, J. Comparison of fruit texture and aquaporin gene expression in papaya “Khak Nual” cultivated under varying conditions. Journal of Horticultural Science and Biotechnology 2023, 98(6), 758-771. https://doi.org/10.1080/14620316.2023.2206396
Dotto, J.M. & Siri, A.A. Nutraceutical value of Carica papaya: A review. Scientific African 2021, 13, 1-16. https://doi.org/10.1016/j.sciaf.2021.e00933
Jiao, M.; Liu, C.; Prieto, M.A.; Lu, X.; Wu, W.; Sun, J.; Oliveira, P.G.; Tang, X.; Xiao, J.; Gandara, J.S.; Hu, D.; Li, N. Biological Functions and Utilization of Different Part of the Papaya: A Review. Food Reviews International 2023, 39(9), 6781–6804. https://doi.org/10.1080/87559129.2022.2124415
Nugroho, D.; Surya, R.; Janshongsawang, J.; Janshongsawang, A.; Benchawattananon, R. Som tum, the famous ethnic food of Thailand: its benefit and innovations. Journal of Ethnic Foods 2023, 10, 1-11. https://doi.org/10.1186/s42779-023-00204-4
Lanjhiyana, R. & Sahu, G.D. A review on influence of seed pretreatment on germination parameters of papaya (Carica papaya L.). The Pharma Innovation Journal 2023, 12(9), 1895-1899. https://www.thepharmajournal.com
Marchi, J.L. & Cicero, S.M. Use of the software Seed Vigor Imaging System (SVIS®) for assessing vigor of carrot seeds. Scientia Agricola 2017, 74(6), 469-473. https://doi.org/10.1590/1678-992X-2016-0220
Yang, J.; Sun, L.; Xing, W.; Feng, G.; Bai, H.; Wang, J. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 253, 1-9. https://doi.org/10.1016/j.saa.2021.119585
Pang, L.; Men, S.; Yan, L. Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques. IEEE Access 2020, 8, 123026-123036. http:// doi.org/10.1109/ACCESS.2020.3006495
Severiano, R.L.; Pinheiro, P.R.; Gomes, F.G.J. Demartelaere ACF, Pereira MD. Image analysis of papaya seeds submitted to sarcotesta removal methods. Pesquisa Agropecuária Tropical. 2018, 48(4), 461-467. http://doi: 10.1590/1983-40632018v4853699
Zhou, S.; Sun, L.; Xing, W.; Feng, G.; Ji, Y.; Yang, J.; Liu, S. Hyperspectral imaging of beet seed germination prediction. Infrared Physics and Technology. 2020, 108, 1-7. https://doi.org/10.1016/j.infrared.2020.103363
Genze, N.; Bhati, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant methods. 2020, 16, 1-11. https://doi.org/10.1186/s13007-020-00699-x
Lurstwut, B. & Pornpanomchai, C. Image analysis based on color, shape and texture for rice seed (Oryza sativa L.) germination evaluation. Agriculture and Natural Resources. 2017, 51, 381-389. https://doi.org/10.1016/j.anres.2017.12.002
Pornpanomchai, C.; Jongsriwattanaporn, S.; Pattanakul, T.; Suriyun, W. Image analysis on color and texture for chili (Capsicum frutescence) seed germination. Science Engineering and Health Studies. 2020, 14(3), 169-183. https://doi.org/10.14456/sehs.2020.16
Erdem, D.; Beke, A.; Kumbasar, T. A deep learning-based pipeline for teaching control theory: transforming feedback control systems on whiteboard into MATLAB. IEEE Access. 2022, 8, 84631- 84641. http://doi:10.1109/ACCESS.2020.2992614