Sustainable Rubber Production Intercrop with Mixed Fruits to Improve Physiological Factors, Productivity, and Income
Main Article Content
Abstract
This study investigated the impact of various rubber intercropping models on productivity, income, and physiological factors, compared to rubber monocropping in Tamod subdistrict, Phatthalung province, Thailand. Three intercropping models from rubber smallholder farms with mature Hevea trees were evaluated: rubber with timber trees (RT), rubber with timber and fruit trees (RTF), and rubber with timber, fruit, and shrub trees (RTFS). The rubber monoculture served as the control treatment. Data was collected from May 2021 to April 2022. Results revealed that intercropping had an 11.3% lower Tapping Panel Dryness incidence than monocropping (88.7%). The RTFS model had the highest latex yield at 1,866.31 kg/ha/year and dry rubber content at 40.11%, outperforming the other models. In the RTF model, fruit yields were 809, 92, 458, and 61 kg/ha/year for Durio zibethinus L., Lansium domesticum, Garcinia mangostana, and Nephelium lappaceum L. The RTFS model had a Salacca zalaca fruit yield of 1,220 kg/ha/year. Environmentally, the RTFS model had the lowest average temperature (30.5°C), highest humidity (68.8%), and lowest light intensity (2,955 lux) compared to the other models. Soil moisture tension was also least negative in RTFS at -5.7 kPa and -5.3 kPa at 30cm and 50cm depths. Economically, the RTF model had the highest net profit at 4,892 USD/ha/year with a benefit-cost ratio of 2.75 and a return on investment of 176%. Sensitivity analysis showed RTF maintained the highest profits even with ±10% changes in revenue and costs. Rubber intercropping, particularly the RTFS model, improved productivity, income, and environmental conditions compared to monocropping.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Rubber Authority of Thailand. (9 March 2020). Daily price of natural rubber. https://www.raot.co.th/rubber2012/menu5.php
Tolno, E.; Kobayashi, H.; chizen, M.; Esham, M.; Balde, B.S. Economic Analysis of the Role of Farmer Organizations in Enhancing Smallholder Potato Farmers’ Income in Middle Guinea. The Journal of Agricultural Science. 2015, 7(123). https://doi.org/10.5539/jas.v7n3p123
Singh, C.; Dorward, P.; Osbahr, H. Developing a Holistic Approach to the Analysis of Farmer Decision-Making: Implications for Adaptation Policy and Practice in Developing Countries. Land Use Policy. 2016, 59, 329–343. https://doi.org/10.1016/j.landusepol.2016.06.041
Weerathamrongsak P.; Wongsurawat, W. The rubber industry of Thailand: a review of past achievements and future prospects. Journal of Agribusiness in Developing and Emerging Economies. 2013, 3(1), 49-63. https://doi.org/10.1108/20440831311321665
Panda B.K.; Sarkar S. Environmental impact of rubber plantation : ecological vs. economical perspectives. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2020, 22(4). 657-661.
Romyen A, Sausue P.; Charenjiratragul, S. Investigation of rubber-based intercropping system in Southern Thailand. Kasetsart Journal of Social Sciences, 2018, 39(1), 135-142 https://doi.org/10.1016/j.kjss.2017.12.002.
Jongrungrot, V.; Thungwa, S.; SNoeck D. Tree-crop diversification in rubber plantation to diversify sources of income for small-scale rubber farmers in Southern Thailand. BOIS & FORETS DES TROPIQUES. 2014, 68(321), 21-32. https://doi.org/10.19182/bft2014.321.a31214
Langenberger, G.; Cadisch, G.; Martin, K.; Min, S.; Waibel, H. Rubber intercropping: a viable concept for the 21st century?. Agroforest Syst. 2017. 91, 577–596. https://doi.org/10.1007/s10457-016-9961-8
Wang, J.; Jiang, H.; He, Y. Determinants of Smallholder Farmers’ Income-Generating Activities in Rubber Monoculture Dominated Region Based on Sustainable Livelihood Framework. Land. 2023, 12, 281. https://doi.org/10.3390/land12020281
Snoeck, D.; Lacote, R.; Kéli, J.; Doumbia, A.; Chapuset, T.; Jagoret, P.; Gohet, É.;. Association of hevea with other tree crops can be more profitable than hevea monocrop during first 12 years. Industrial Crops and Products. 2013, 43, 578-586. https://doi.org/10.1016/j.indcrop.2012.07.053
Huang, I.Y.; James, K.; Lowenberg-DeBoer, J. Economic outcomes of rubber based agroforestry systems: a systematic review and narrative synthesis. Agroforest Syst. 2023, 97, 335–354. https://doi.org/10.1007/s10457-022-00734-x
Zaw, Z. N. Role of Rubber-based Intercropping in Ensuring Sustainable Natural Rubber Production of Smallholders. Songklanakarin Journal of Plant Science. 2023, 10(2), 61-71.
Thai Meteorological Department. Climatological data for the period 1981-2010. https://www.tmd.go.th/ (accessed on 9 March 2020).
Rubber Research Institute of Thailand. Rubber planting recommendation for Southern Thailand. https://www.raot.co.th/article_attach/build.pdf . (accessed on 16 May 2018).
Zeng, H.; Wu, J.; Singh, A.K.; Zhu, X.; Zhang, W.; Hahn P.; Holscher, D.; Liu, W. Effect of intercrops complexity on water uptake patterns in rubber plantations: Evidence from stable isotopes (C-H-O) analysis. Agriculture, Ecosystems and Environment. 2022, 338, 1-13. https://doi.org/10.1016/j.agee.2022.108086
Yamane, T. Statistics, an introductory analysis, 2nd ed.; Harper and Row: New York, 1967.
Somboonsuke, B.; Cherdchom, P. Socio-Economic Adjustment of Small Holding Rubber-Based Farming System: A Case Study in Southern Region Thailand. Kasetsart Journal of Social Sciences. 2000, 21, 158-177.
Creswell, J.W. Research design: Qualitative, quantitative, and mixed methods approaches, 4th ed.; SAGE Publications: Thousand Oaks, California, 2014.
Kumar, M.; Kumari, A. Soil moisture monitoring using tensiometers. Indian Journal of Horticulture. 2017, 74(1), 131-134.
Jarzyna, K.; Podgorska, M.; Szwed, M.; Jazwiak, M. A simple light meter as a device for studying the influence of seasonal change of light conditions on the phenology of herbaceous undergrowth species in a fertile beach forest. Baltic Forestry. 2018, 24(1), 148-157.
Tillekeratne, L.M.K; Karunanayake, L.; Sarath Kurnara, P.H.; Weeraman, S. A rappid and accurate method for determining the Dry Rubber Content and total solid content of NR latex. Polymer Testing. 1989, 8, 353-358.
Agriculture land economic. (2022, Sebtember 20) http://webapp.ldd.go.th/lpd/node_modules/file/Eco/ผลตอบแทนทางเศรษฐกิจยางพารา/Rubber_economic_returns.pdf.
Udom, R.; Chancharat, S.; Athipanyakul, T. A financial and risk analysis of Thong Dee Pummelo farming investment in Chaiyaphum province. Khon Kaen AGR. J. 2015, 43, 253-259. (In Thai). [24]Burgess, A.J.; Correa, M.E.; Parkes, C.B. The deployment of intercropping and agroforestry as adaptation to climate change. Crop and Environment. 2022, 1(2), 145-160. https://doi.org/10.1016/j.crope.2022.05.001
Doungmusik, A. & Sdoodee, S. Enhancing the latex productivity of Hevea brasiliensis clone RRIM 600 using ethylene stimulation. Journal of Agricultural Technology. 2012. 8(6), 2033-2042.
Chotiphan, R.; Musigamart, N.; Suwannalert, S.; Chehsoh, J.; Lerksamran, T.; Lacote, R.; Sajjaphan, K. Long Term Effect of Low Frequency Tapping Systems Applied to Rubber Tree (Hevea brasiliensis), Clone RRIT 251, on Agronomic Performance in Upper Southern Thailand. Trends in Sciences. 2023, 20(11), 6868. https://doi.org/10.48048/tis.2023.6868
Lacote, R.; Gabla, O.; Obouayeba S.; Eschbach, J.M.; Rivano, F.; Dian, K.; Gohet E. Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry. Field Crops Research. 2009, 115, 94-98. https://doi.org/10.1016/j.fcr.2009.10.007
Maraphum, K.; Wanjantuk, P.; Hanpinitsak, P.; Paisarnsrisomsuk, S.; Lim, C.H.; Posom, J. Fast determination of total solids content (TSC) and dry rubber content (DRC) of para rubber latex using near-infrared spectroscopy. Industrial Crops and Product. 2022, 187, 115507. https://doi.org/10.1016/j.indcrop.2022.115507
Hemati Z.; Selvalakshmi, S.; Xia, S.; Yang, X. Identification of indicators: Monitoring the impacts of rubber plantations on soil quality in Xishuangbanna, Southwest China. Ecological Indicators. 2020, 116, 106491. https://doi.org/10.1016/j.ecolind.2020.106491
Langenberger, G.; Cadisch, G.; Martin, K.; Min, S.; Waibel, H. Rubber intercropping: a viable concept for the 21st century?. Agroforestry Systems. 2017, 91(3), 577-596. https://doi.org/10.1007/s10457-016-9961-8
Cahyo, A.N.; Dong, Y.; Taryono; Nugraha, Y.; Junaidi; Sahuri; Penot, E.; Hairmansis, A.; Purwestri, Y.A.; Akbar, A.; Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production?. Agriculture. 2024, 14,1038. https://doi.org/10.3390/agriculture14071038
Oliosi, G.;. Oliveira, M.G.; Partelli, F.L.; Microclimate and development of black pepper intercropped with rubber tree. Agroforest Syst. 2021. 95, 163 5–1645. https://doi.org/10.1007/s10457-021-00674-y
Yang, B.; Meng, X.; Singh A. K.; Wang, P.; Song, L.; Zakari, S.; Liu, W. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems & Environment. 2020, 298(15) 106937. https://doi.org/10.1016/j.agee.2020.106937
Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology. 2010, 150(4), 510-518.
Greiser, C.; Hederova´, L.; Vico G.; Wild, J.; Macek, M.; Kopecký, M. Higher soil moisture increases microclimate temperature buffering in temperate broadleaf forests. Agricultural and Forest Meteorology. 2024, 345(15), 109828. https://doi.org/10.1016/j.agrformet.2023.109828
Luo C.; Wang R.; Li C.; Zheng C.; Dou, X. Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, China. Agricultural Water Management. 2023, 275(1), 108001. https://doi.org/10.1016/j.agwat.2022.108001
Lu, D.; Liu, B.; Ren, M.;Wu, C.; Ma, J.; Shen, Y. Light Deficiency Inhibits Growth byAffecting Photosynthesis Efficiency as well as JA and Ethylene Signaling in Endangered Plant Magnoliasinostellata. Plants. 2021, 10, 2261. https://doi.org/10.3390/plants10112261
Yang, T.; Kadambot, H.M.; Liu, S.K. Cropping systems in agriculture and their impact on soil health-A review. Global Ecology and Conservation. 2020, 23, e01118. https://doi.org/10.1016/j.gecco.2020.e01118
Huang, I.Y.; James, K.; Thamthanakoon, N., Pinitjitsamut, P.; Rattanamanee, N.; Pinitjitsamut M.; James,Y.S. Lowenberg DeBoer Economic outcomes of rubber based agroforestry systems: a systematic review and narrative synthesis. Agroforest Syst. 2023, 97, 335–354. https://doi.org/10.1007/s10457-022-00734-x
Hua, M.W.M.; Thomas, E.W.; Wanger, T.C. (2021). Rubber Agroforestry: Feasibility at Scale. Mighty Earth.
ELOUATTASSI, Y.; FERIOUN, M.; GHACHTOULI, N.EL.; DERRAZ, K.; RACHIDI, F. Agroecological concepts and alternatives to the problems of contemporary agriculture: Monoculture and chemical fertilization in the context of climate change. Journal of Agriculture and Environment for International Development. 2023, 117(2), 41-98. https://doi.org/10.36253/jaeid-14672
Cowan, C. Agroforestry offers Thai rubber farmers a pathway to profit and sustainability. (31 Jul 2024) Asia Agroecology https://news.mongabay.com/2024/07/agroforestry-offers-thai-rubber-farmers-a-pathway- to-profit-and-sustainability/
Sekaran U.; Lai, L.; Ussir D.A.N.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security – A review Journal of Agriculture and Food Research. 2021, 5, 100190. https://doi.org/10.1016/j.jafr.2021.100190
Ha, T.M.; Manevska Tasevska, G.; Weih, M.; Hansson, H. Heterogeneity in farmers’ stage of behavioural change in intercropping adoption: an application of the Transtheoretical ModelHa et al. Agricultural and Food Economics. 2024 , 2, 2-27. https://doi.org/10.1186/s40100-024-00306-w
Kangogo, D.; Dentoni, D.; Bijman J. Adoption of climate‐smart agriculture among smallholder farmers: Does farmer entrepreneurship matter?. Land Use Policy. 2021, 109, 105666. https://doi.org/10.1016/j.landusepol.2021.105666
Barbosa, M.W. Government Support Mechanisms for Sustainable Agriculture: A Systematic Literature Review and Future Research Agenda. Sustainability. 2024, 16, 2185. https://doi.org/10.3390/su16052185
Pedersen, S.M.; Tarekegn, K.; Tove, E.; Sigrid, C.; Marilena, D.; Spyros, G.; Gohar, F.; Arno, I., R., Nelson, E., Puggaard, L.; Nertingerf, M.; Brinks, H.; Puˇsko, D.; Adrian, J.B.;. Drivers and barriers to climate-smart agricultural practices and technologies adoption: Insights from stakeholders of five European food supply chains Smart Agricultural Technology. 2024, 8, 100478. https://doi.org/10.1016/j.atech.2024.100478
Qi, D.; Wu, Z.; Yang, C.; Xie, G.; Li, Z.; Yang, X.; Li, D. Can intercropping with native trees enhance structural stability in young rubber (Hevea brasiliensis) agroforestry system?. European Journal ofAgronomy. 2021, 130, 126353. https://doi.org/10.1016/j.eja.2021.126353
Maitra, S.; Hossain, A.;Brestic, M.; Skalicky, M.; Ondrisik, P.;Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy. 2021, 11, 343. https://doi.org/10.3390/agronomy11020343
Mouratiadou, I.; Wezel, A.; Kamilia, K.; Marchetti, A.; Luisa, M.; Bàrberi P.P. The socio economic performance of agroecology. A review Agronomy for Sustainable Development. 2024, 44(19), 1-21 https://doi.org/10.1007/s13593-024-00945-9
Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Pietro, P.; Iannetta, M.; Jones, H.G.; Karley, A.J.; Li, L.; McKenzie, B.M.; Pakeman, R.J.; Paterson, E.; Sch€ob, C.; Shen, J.; Squire, G.; Watson, C.A.; Zhang, C.; Zhang , F.; Zhang, J.; White, P.J. Improving intercropping: a synthesis of research in agronomy, plantphysiology and ecology. New Phytologist. 2015. 206, 107-117. https://doi.org/10.1111/nph.13132
Yu, T.; Mahe, L.; Li, Y.; Wei,X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy. 2022, 12, 436. https://doi.org/10.3390/agronomy12020436
Thomas, E.W.; Nelson, L.; Juthong, W.; Bumrungsri, S.; Brattström, O.; Stroesser, L.; Chambon, B.; Penot, É.; Tongkaemkaew, U.; Edwards, D.P.; Dolman, P.M.;. Rubber agroforestry in Thailand provides some biodiversitybenefits without reducing yields. J Appl Ecol. 2020, 57, 17-30. https://doi.org/10.1111/1365-2664.13530
Foguesatto, C.R.; Borges, J.A.R.; Machado, J.A.D. A review and some reflections on farmers' adoption of sustainable agricultural practices worldwide. Science of The Total Environment. 2020, 729, 138831. https://doi.org/10.1016/j.scitotenv.2020.138831