An An AIoT-based Air Quality Monitoring System for Real-time PM2.5 Prediction in Urban Environments

Main Article Content

Nuth Otanasap
Siriwich Tadsuan
Chanintorn Chalermsuk

Abstract

This study aimed to develop an air quality monitoring and forecasting system focusing on PM2.5 using a combination of AI of Things (AIoT) technology. The system was designed to provide warnings of PM2.5 levels through a mobile application. Air pollution, particularly PM2.5, is a significant health concern globally, with Southeast Asia being heavily affected. Bangkok, Thailand, experiences high PM2.5 concentrations during cool weather. Existing research explores short-term PM2.5 prediction using AIoT. Still, there is a need for improved software, hardware, and ML algorithms for user-friendly mobile applications with real-time data access and health advisories. The system was installed on a building next to a main road in Bangkok. It collected data on PM2.5. The Air Quality Index (AQI) was used to categorize PM2.5 levels and their health impacts. Time series analysis with moving averages and the Random Forest algorithm were employed in advance for PM2.5 forecasting. A mobile application was developed to provide a user interface and data visualization. The MARF (Moving Average and Random Forest) model emerged as a success, achieving higher accuracy (average of 92.59%) for 1-hour advance forecasts compared to the Moving Average (MA) model (average of 84.16%). The developed system demonstrates the potential of AIoT for accurate PM2.5 monitoring and forecasting. Future research could explore more advanced ML algorithms and integrate additional environmental factors for enhanced forecasting accuracy.

Article Details

Section
Research Articles

References

Nazarenko, Y.; Pal, D.; Ariya, P. A. Air Quality Standards for the Concentration of Particulate Matter 2.5, Global Descriptive Analysis. Bulletin of the World Health Organization 2020, 99(2), 125–137D. https://doi.org/10.2471/blt.19.245704.

Cohen, A. J.; Brauer, M.; Burnett, R.; Anderson, H. R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C. A. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. The Lancet 2017, 389(10082), 1907–1918. https://doi.org/10.1016/s0140-6736(17)30505-6.

The Lancet Respiratory Medicine. Air Pollution—Time to Address the Silent Killer. The Lancet Respiratory Medicine 2021, 9(11), 1203. https://doi.org/10.1016/s2213-2600(21)00448-3.

Narita, D.; Oanh, N.; Sato, K.; Huo, M.; Permadi, D.; Chi, N.; Ratanajaratroj, T.; Pawarmart, I. Pollution Characteristics and Policy Actions on Fine Particulate Matter in a Growing Asian Economy: The Case of Bangkok Metropolitan Region. Atmosphere 2019, 10(5), 227. https://doi.org/10.3390/atmos10050227.

Air Quality Monitoring Station. Air Quality in Bangkok. Air Quality Division, Bangkok Metropolitan Administration. https://airquality.airbkk.com/ (accessed 2024-06-01).

Air Quality Division, Geo-Informatics and Space Technology Development Agency (GISTDA). PM2.5 Thailand. [https://pm25.gistda.or.th/](https://accessed 2024-06-01). [7]Chirasophon, S.; Pochanart, P. The Long-Term Characteristics of PM10 and PM2.5 in Bangkok, Thailand. Asian Journal of Atmospheric Environment 2020, 14(1), 73–83. https://doi.org/10.5572/ajae.2020.14.1.073.

Alas, H. D.; Stöcker, A.; Umlauf, N.; Senaweera, O.; Pfeifer, S.; Greven, S.; Wiedensohler, A. Pedestrian Exposure to Black Carbon and PM2.5 Emissions in Urban Hot Spots: New Findings Using Mobile Measurement Techniques and Flexible Bayesian Regression Models. Journal of Exposure Science & Environmental Epidemiology 2021, 32(4), 604–614. https://doi.org/10.1038/s41370-021-00379-5.

Pozzer, A.; Anenberg, S. C.; Dey, S.; Haines, A.; Lelieveld, J.; Chowdhury, S. Mortality Attributable to Ambient Air Pollution: A Review of Global Estimates. GeoHealth 2022. https://doi.org/10.1029/2022gh000711.

Mclean Cabaneros, S.; Calautit, J.; Hughes, B.; Author, C. A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling & Software 2019, 119, 285-304. https://strathprints. strath.ac.uk/69357/1/Cabaneros_etal_EMS_2019_A_review_of_artificial_neural_network_models_for_ambient.pdf (accessed 2023-06-01).

Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U. A.; Katsouyanni, K.; Janssen, N. A. H.; Martin, R. V.; Samoli, E.; Schwartz, P. E.; Stafoggia, M.; Bellander, T.; Strak, M.; Wolf, K.; Vienneau, D.; Vermeulen, R. A Comparison of Linear Regression, Regularization, and Machine Learning Algorithms to Develop Europe-Wide Spatial Models of Fine Particles and Nitrogen Dioxide. Environment International 2019, 130, 104934. https://doi.org/10.1016/j.envint.2019.104934.

Chu, Y.; Liu, Y.; Li, X.; Liu, Z.; Lu, H.; Lu, Y.; Mao, Z.; Chen, X.; Li, N.; Ren, M.; Liu, F.; Tian, L.; Zhu, Z.; Xiang, H. A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere 2016, 7(10), 129. https://doi.org/10.3390/atmos7100129.

Kumar, U.; Jain, V. K. ARIMA Forecasting of Ambient Air Pollutants (O3, NO, NO2 and CO). Stochastic Environmental Research and Risk Assessment 2009, 24(5), 751–760. https://doi.org/10.1007/s00477-009-0361-8.

Shah, J.; Mishra, B. Analytical Equations Based Prediction Approach for PM2.5 Using Artificial Neural Network. SN Applied Sciences 2020, 2(9). https://doi.org/10.1007/s42452-020-03294-w.

Zheng, Y.; Zhang, Q.; Wang, Z.; Zhu, Y. Application Research on PM2.5 Concentration Prediction of Multivariate Chaotic Time Series. IOP conference series. Earth and environmental science (Online) 2019, 237, 022010–022010. https://doi.org/10.1088/1755-1315/237/2/022010.

Otanasap, N.; Chalermsuk, C.; Bungkomkhun, P. A Survey of IoT: Advances in Smart and Dynamic Environmental Monitoring. In Proceeding of 8th International Conference on Environmental Engineering, Science and Management; The Environmental Engineering Association of Thailand (EEAT): BKK, THA, 2019; pp. 1–10.

Balogun, H.; Alaka, H.; Egwim, C. N. Boruta-Grid-Search Least Square Support Vector Machine for NO2 Pollution Prediction Using Big Data Analytics and IoT Emission Sensors. Applied computing and informatics 2021. https://doi.org/10.1108/aci-04-2021-0092.

Bhagat, L.; Goyal, G.; Bisht, D. C. S.; Ram, M.; Kazancoglu, Y. Air Quality Management Using Genetic Algorithm Based Heuristic Fuzzy Time Series Model. The TQM Journal 2021. https://doi.org/10.1108/tqm-10-2020-0243.

Mani, G.; Viswanadhapalli, J. K.; Stonie, A. A. Prediction and Forecasting of Air Quality Index in Chennai Using Regression and ARIMA Time Series Models. Journal of Engineering Research 2021, 9. https://doi.org/ 10.36909/jer.10253.

Kim, D.; Han, H.; Wang, W.; Kang, Y.; Lee, H.; Kim, H. S. Application of Deep Learning Models and Network Method for Comprehensive Air-Quality Index Prediction. Applied Sciences 2022, 12(13), 6699. https://doi.org/10.3390/app12136699.

Kök, İ.; Şimşek, M. U.; Özdemir, S. A deep learning model for air quality prediction in smart cities. International Conference on Big Data (Big Data) 2017. IEEE Xplore. https://doi.org/10.1109/BigData.2017.8258144.

Maleki, H.; Sorooshian, A.; Goudarzi, G.; Baboli, Z.; Tahmasebi Birgani, Y.; Rahmati, M. Air Pollution Prediction by Using an Artificial Neural Network Model. Clean Technologies and Environmental Policy 2019, 21(6), 1341–1352. https://doi.org/10.1007/s10098-019-01709-w.

Sun, Y.; Liu, J. AQI Prediction Based on CEEMDAN-ARMA-LSTM. Sustainability 2022, 14(19), 12182. https://doi.org/10.3390/su141912182.

Baharfar, Y.; Mohammadyan, M.; Moattar, F.; Nassiri, P.; Behzadi, M. H. Indoor PM2.5 Concentrations of Pre-Schools; Determining the Effective Factors and Model for Prediction. Smart and Sustainable Built Environment 2021. https://doi.org/10.1108/sasbe-12-2020-0183.

Ansari, M.; Alam, M. An Intelligent IoT-Cloud-Based Air Pollution Forecasting Model Using Univariate Time-Series Analysis. Arabian journal for science and engineering 2023. https://doi.org/10.1007/s13369-023-07876-9.

Sooktawee, S.; Kanchanasuta, S.; Bunplod, N. Assessment of 24-h Moving Average PM2.5 Concentrations in Bangkok, Thailand against WHO Guidelines. Sustain Environ Res 2023, 33(1). https://doi.org/10.1186/ s42834-023-00165-y.

Pedersen, T. scikit-learn: Machine Learning in Python [Software]. 2020. https://scikit-learn.org/stable/ modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed 2024-06-01).

alldatasheet.com. BME280 Datasheet, PDF. www.alldatasheet.com. https://www.alldatasheet.com/ view.jsp?Searchword=BME280&sField=4 (accessed 2024-06-01).

Digital Universal Particle Concentration Sensor PMS7003 Series Data Manual; 2016. https://download. kamami.pl/p564008-PMS7003%20series%20data%20manua_English_V2.5.pdf.

Renke, S. Wind Direction Transmitter Instruction Manual (Type 485) RS-FXJT-N01 Wind Direction Transmitter User’s Manual (Type 485). https://instrucenter.com/wp-content/uploads/2022/03/RS-FXJT-N01.pdf (accessed 2024-06-01).

Renke, S. Instruction Manual of Wind Speed Transmitter (Type 485) RS-FSJT-N01 Wind Speed Transmitter User’s Guide (Type 485). https://instrucenter.com/wp-content/uploads/2022/03/RS-FSJT-No1.pdf (accessed 2024-07-24).

Espressif. ESP32 Series Datasheet Including; 2024. https://www.espressif.com/sites/default/files/ documentation/esp32_datasheet_en.pdf.

Mohammadi, F.; Teiri, H.; Hajizadeh, Y.; Abdolahnejad, A.; Ebrahimi, A. Prediction of Atmospheric PM2.5 Level by Machine Learning Techniques in Isfahan, Iran. Scientific Reports 2024, 14(1), 2109. https://doi.org/10.1038/s41598-024-52617-z.

Attaallah, A.; Ahmad Khan, R. SMOTEDNN: A Novel Model for Air Pollution Forecasting and AQI Classification. Computers, Materials & Continua 2022, 71(1), 1403–1425. https://doi.org/10.32604/cmc.2022.021968.

Masinde, C. J.; Gitahi, J.; Hahn, M. TRAINING RECURRENT NEURAL NETWORKS for PARTICULATE MATTER CONCENTRATION PREDICTION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2020, XLIII-B2-2020, 1575–1582. https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1575-2020.

Tripathi, K.; Pathak, P. Deep Learning Techniques for Air Pollution. 3rd International Conference on Intelligent Technologies (CONIT) 2023. IEEE Xplore. https://doi.org/10.1109/ICCCIS51004.2021.9397130.