Efficient and Rapid Classification of Various Maize Seeds Using Transfer Learning and Advanced AI Techniques
Main Article Content
Abstract
The classification of maize (Zea mays) is crucial for agricultural efficiency, breeding programs, and market specifications. The EfficientMaize dataset was utilized alongside Google’s Teachable Machine to develop a model separating maize varieties into classes: Bhihilifa, SanzalSima, and WangDataa. As a result, the study demonstrated that user-friendly machine learning tools are helpful in agriculture since they delivered high accuracy rates, such as 99% in Bhihilifa, 95% in SanzalSima, and 85% in WangDataa. This paper also emphasizes how modern machine-learning technologies can be accessible to farmers and researchers through tools such as Google’s Teachable Machine, which does not require coding knowledge or online expertise. To validate the results obtained with Google Teachable Machine, further analyses were conducted using RESNET-50. These findings add to previous studies on deep learning and hyperspectral imaging, leading to seed classification by increasing the potential of using machine learning to improve agricultural practices and food security.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Erdurmuş, D.; Soylu, S. Afyonkarahisar koşullarında silajlık mısır çeşitlerinin yeşil ot ve kuru madde verimlerinin belirlenmesi. Eregli Journal of Agricultural Science 2023, 3(2), 43-50. DOI: 10.54498/ETBD.2023.21. https://doi.org/10.54498/ETBD.2023.21
Yerlikaya Sümbül, D.; Soylu, S. Karapınar Koşullarında Şeker Mısır (Zea mays L. saccharata) Çeşitlerinin Taze Koçan ve Hasıl Verimlerinin Belirlenmesi. Eregli Journal of Agricultural Science 2022, 81-89. DOI: 10.54498/etbd.2022.15. https://doi.org/10.54498/ETBD.2022.15
Özyiğit, İ. İ. Tarım topraklarında ağır metaller; kökenleri, yayılışları ve etkileri. Eregli Journal of Agricultural Science 2021, 1(1), 46-72. DOI: 10.54498/etbd.2021.5. https://doi.org/10.54498/etbd.2021.5
Gebeyehu, S.; Sintayehu Shibeshi, Z. Maize seed variety identification model using image processing and deep learning. Indonesian Journal of Electrical Engineering and Computer Science 2024, 33(2), 990. DOI: 10.11591/ijeecs.v33.i2.pp990-998. https://doi.org/10.11591/ijeecs.v33.i2.pp990-998
Taner, A.; Öztekin, Y. B.; Tekgüler, A.; Sauk, H.; Duran, H. Classification of varieties of grain species by artificial neural networks. Agronomy 2018, 8 (7), 123. DOI: 10.3390/agronomy8070123. https://doi.org/10.3390/agronomy8070123
Chen, J.; Luo, T.; Wu, J.; Wang, Z.; Zhang, H. A Vision Transformer network SeedViT for classification of maize seeds. Journal of Food Process Engineering 2022, 45(5). DOI: 10.1111/jfpe.13998. https://doi.org/10.1111/jfpe.13998
Zhang, X.; Cheng, J.; Shi, Z.; Zhang, Y.; Wang, M. Design and Experiment of a Clamp-Holding Precision Maize-Seed-Metering Device. Engenharia Agrícola 2022, 42(6). DOI: 10.1590/1809-4430-eng.agric. v42n6e20220049/2022. https://doi.org/10.1590/1809-4430-eng.agric.v42n6e20220049/2022
Asnicar, F.; Thomas, A. M.; Passerini, A.; Waldron, L.; Segata, N. Machine learning for microbiologists. Nature Reviews Microbiology 2024, 22(4), 191-205. DOI: 10.1038/s41579-023-00984-1 From NLM Medline. https://doi.org/10.1038/s41579-023-00984-1
Attri, I.; Awasthi, L. K.; Sharma, T. P. Machine learning in agriculture: a review of crop management applications. Multimedia Tools and Applications 2024, 83(5), 12875-12915. DOI: 10.1007/s11042-023-16105-2. https://doi.org/10.1007/s11042-023-16105-2
Özel, M. A.; Gül, M. Y.; Güneş, E. YOLO Algoritması ile Gastronomide Yemek İçeriklerini Tespit Etmede Bir Makine Öğrenimi Yaklaşımı. Necmettin Erbakan Üniversitesi GastroMedia Dergisi (NEU GastroMedia) 2023, 2(1), 31-38. DOI: 10.54497/Gastromedia.2023.7.
Kumar, R.; Singh, M.; Kumar, P.; Singh, J. Crop Selection Method to maximize crop yield rate using machine learning technique. In 2015 international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM), 2015, IEEE: pp 138-145. DOI: 10.1109/ICSTM.2015.7225403. https://doi.org/10.1109/ICSTM.2015.7225403
Wotlolan, D. L.; Lowry, J. H.; Wales, N. A.; Glencross, K. Land suitability evaluation for multiple crop agroforestry planning using GIS and multi-criteria decision analysis: A case study in Fiji. Agroforestry systems 2021, 95(8), 1519-1532. DOI: 10.1007/s10457-021-00661-3. https://doi.org/10.1007/s10457-021-00661-3
Malahina, E. A. U.; Saitakela, M.; Bulan, S. J.; Lamabelawa, M. I. J.; Belutowe, Y. S. Teachable Machine: Optimization of Herbal Plant Image Classification Based on Epoch Value, Batch Size and Learning Rate. Journal of Applied Data Sciences 2024, 5(2), 532-545. DOI: 10.47738/jads.v5i2.206. https://doi.org/10.47738/jads.v5i2.206
Chalmers, J.; Thangavel, S. K.; Johnson, I. LeafYogi: Deep Learning based Mobile Application Framework for Ayurvedic Leaf Classification. In 2024 International Conference on Inventive Computation Technologies (ICICT), 2024, IEEE: pp 950-954. https://doi.org/10.1109/ICICT60155.2024.10544728
Tejaswi, D.; Vaishnavi, T. S.; Nandini, B.; Raju, P. N.; Deepika, B. Plant disease detection using deep learning. International Journal of Science and Research Archive 2024, 12(1), 2476-2488. DOI: 10.30574/ijsra.2024.12.1.1043. https://doi.org/10.30574/ijsra.2024.12.1.1043
Vikraman, B. P.; Mahadevan, V.; Gadi, R. B.; Al Shekili, A. K.; Al Yahmadi, M. K. Iot-Based Multiclass Fruit Classification System using Transfer Learning. Journal of Electrical Systems 2024, 20(7s), 1308-1314. DOI: 10.52783/jes.3703. https://doi.org/10.52783/jes.3703
Setiawan, F. B.; Adipradana, C. B.; Pratomo, L. H. Fruit Ripeness Classification System Using Convolutional Neural Network (CNN) Method. PROtek: Jurnal Ilmiah Teknik Elektro 2023, 10(1), 46. DOI: 10.33387/protk.v10i1.5549. https://doi.org/10.33387/protk.v10i1.5549
Hu, Y.; Wang, Z.; Li, X.; Li, L.; Wang, X.; Wei, Y. Nondestructive classification of maize moldy seeds by hyperspectral imaging and optimal machine learning algorithms. Sensors 2022, 22(16), 6064. DOI: 10.3390/s22166064 From NLM Medline. https://doi.org/10.3390/s22166064
ElMasry, G.; Mandour, N.; Wagner, M. H.; Demilly, D.; Verdier, J.; Belin, E.; Rousseau, D. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 2019, 15(1), 24. DOI: 10.1186/s13007-019-0411-2 From NLM PubMed-not-MEDLINE. https://doi.org/10.1186/s13007-019-0411-2
Bi, C.; Zhang, S.; Chen, H.; Bi, X.; Liu, J.; Xie, H.; Yu, H.; Song, S.; Shi, L. Non-Destructive Classification of Maize Seeds Based on RGB and Hyperspectral Data with Improved Grey Wolf Optimization Algorithms. Agronomy 2024, 14(4), 645. DOI: 10.3390/agronomy14040645. https://doi.org/10.3390/agronomy14040645
Ma, R.; Wang, J.; Zhao, W.; Guo, H.; Dai, D.; Yun, Y.; Li, L.; Hao, F.; Bai, J.; Ma, D. Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM. Agriculture 2022, 13(1), 11. DOI: 10.3390/agriculture13010011. https://doi.org/10.3390/agriculture13010011
Miao, A.; Zhuang, J.; Tang, Y.; He, Y.; Chu, X.; Luo, S. Hyperspectral Image-Based Variety Classification of Waxy Maize Seeds by the t-SNE Model and Procrustes Analysis. Sensors (Basel) 2018, 18(12), 4391. DOI: 10.3390/s18124391 From NLM PubMed-not-MEDLINE. https://doi.org/10.3390/s18124391
Xu, P.; Sun, W.; Xu, K.; Zhang, Y.; Tan, Q.; Qing, Y.; Yang, R. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning. Foods 2022, 12(1), 144. DOI: 10.3390/foods12010144 From NLM PubMed-not-MEDLINE. https://doi.org/10.3390/foods12010144
Isik, H.; Tasdemir, S.; Taspinar, Y. S.; Kursun, R.; Cinar, I.; Yasar, A.; Yasin, E. T.; Koklu, M. Maize seeds forecasting with hybrid directional and bi-directional long short-term memory models. Food Sci Nutr 2024, 12(2), 786-803. DOI: 10.1002/fsn3.3783 From NLM PubMed-not-MEDLINE. https://doi.org/10.1002/fsn3.3783
Tamasiga, P.; Onyeaka, H.; Bakwena, M.; Happonen, A.; Molala, M. Forecasting disruptions in global food value chains to tackle food insecurity: The role of AI and big data analytics-A bibliometric and scientometric analysis. Journal of Agriculture and Food Research 2023, 14, 100819. https://doi.org/10.1016/j.jafr.2023.100819
Khang, A. Handbook of Research on AI-Equipped IoT Applications in High-Tech Agriculture; IGI Global, 2023. https://doi.org/10.4018/978-1-6684-9231-4
Akintuyi, O. B. Adaptive AI in precision agriculture: a review: investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Research Journal of Multidisciplinary Studies 2024, 7(02), 016-030. https://doi.org/10.53022/oarjms.2024.7.2.0023
Zhang, L.; Zhang, S.; Liu, J.; Wei, Y.; An, D.; Wu, J. Maize seed variety identification using hyperspectral imaging and self-supervised learning: A two-stage training approach without spectral preprocessing. Expert Systems with Applications 2024, 238, 122113. https://doi.org/10.1016/j.eswa.2023.122113
Pareek, C.; Singh, N.; Tewari, V.; Dhruw, L.; Singh, H. D. Classification of broken maize kernels using artificial neural network-assisted image-processing approach. Journal of Biosystems Engineering 2023, 48(1), 55-68. https://doi.org/10.1007/s42853-022-00173-7
Chen, S.; Li, Y.; Zhang, Y.; Yang, Y.; Zhang, X. Soft X-ray image recognition and classification of maize seed cracks based on image enhancement and optimized YOLOv8 model. Computers and Electronics in Agriculture 2024, 216, 108475. https://doi.org/10.1016/j.compag.2023.108475
Asante, E.; Appiah, O.; Appiahene, P.; Adu, K. EfficientMaize: A Lightweight Dataset for Maize Classification on Resource-Constrained Devices. Data in Brief 2024, 54, 110261. DOI: 10.1016/j.dib.2024.110261 From NLM PubMed-not-MEDLINE. https://doi.org/10.1016/j.dib.2024.110261
Lab, G. C. Teachable Machine Community. 2024. https://github.com/googlecreativelab/teachablemachine-community/ (accessed 2024 30/09/2024).
Howard, A. G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 2017.
Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press, 2016.
Shorten, C.; Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. Journal of big data 2019, 6(1), 1-48. DOI: 10.1186/s40537-019-0197-0. https://doi.org/10.1186/s40537-019-0197-0
Xu, P.; Tan, Q.; Zhang, Y.; Zha, X.; Yang, S.; Yang, R. Research on maize seed classification and recognition based on machine vision and deep learning. Agriculture 2022, 12(2), 232. https://doi.org/10.3390/agriculture12020232
Huang, S.; Fan, X.; Sun, L.; Shen, Y.; Suo, X. Research on classification method of maize seed defect based on machine vision. Journal of Sensors 2019, 2019 (1), 2716975. https://doi.org/10.1155/2019/2716975
Cavalin, P.; Oliveira, L. Confusion matrix-based building of hierarchical classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings 23, 2019, Springer, pp 271-278. https://doi.org/10.1007/978-3-030-13469-3_32
Bacanin, N.; Zivkovic, M.; Al-Turjman, F.; Venkatachalam, K.; Trojovský, P.; Strumberger, I.; Bezdan, T. Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application. Scientific Reports 2022, 12(1), 6302. https://doi.org/10.1038/s41598-022-09744-2
Velesaca, H. O.; Mira, R.; Suárez, P. L.; Larrea, C. X.; Sappa, A. D. Deep learning based corn kernel classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020; pp 66-67. https://doi.org/10.1109/CVPRW50498.2020.00041
Kishore, B.; Yasar, A.; Taspinar, Y. S.; Kursun, R.; Cinar, I.; Shankar, V. G.; Koklu, M.; Ofori, I. Computer‐aided multiclass classification of corn from corn images integrating deep feature extraction. Computational Intelligence and Neuroscience 2022, 2022(1), 2062944. https://doi.org/10.1155/2022/2062944
Javanmardi, S.; Ashtiani, S.-H. M.; Verbeek, F. J.; Martynenko, A. Computer-vision classification of corn seed varieties using deep convolutional neural network. Journal of Stored Products Research 2021, 92, 101800. https://doi.org/10.1016/j.jspr.2021.101800
Labati, R. D.; Gamassi, M.; Piuri, V.; Scotti, F. A low-cost neural-based approach for wood types classification. In 2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2009, IEEE: pp 199-203. https://doi.org/10.1109/CIMSA.2009.5069947
Teisseyre, P.; Zufferey, D.; Słomka, M. Cost-sensitive classifier chains: Selecting low-cost features in multi-label classification. Pattern Recognition 2019, 86, 290-319. https://doi.org/10.1016/j.patcog.2018.09.012
Hamed, M. A.; El-Habib, M. F.; Sababa, R. Z.; Al-Hanjor, M. M.; Abunasser, B. S.; Abu-Naser, S. S. Artificial Intelligence in Agriculture: Enhancing Productivity and Sustainability. 2024.
Senoo, E. E. K.; Anggraini, L.; Kumi, J. A.; Luna, B. K.; Akansah, E.; Sulyman, H. A.; Mendonça, I.; Aritsugi, M. IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics 2024, 13(10), 1894. https://doi.org/10.3390/electronics13101894
Chaterji, S.; DeLay, N.; Evans, J.; Mosier, N.; Engel, B.; Buckmaster, D.; Ladisch, M. R.; Chandra, R. Lattice: A vision for machine learning, data engineering, and policy considerations for digital agriculture at scale. IEEE Open Journal of the Computer Society 2021, 2, 227-240. https://doi.org/10.1109/OJCS.2021.3085846
Rogers, H.; De La Iglesia, B.; Zebin, T.; Cielniak, G.; Magri, B. Advancing precision agriculture: domain-specific augmentations and robustness testing for convolutional neural networks in precision spraying evaluation. Neural Computing and Applications 2024, 1-19. https://doi.org/10.1007/s00521-024-10142-0
Mandapuram, M.; Mahadasa, R.; Surarapu, P. Evolution of smart farming: Integrating IoT and AI in agricultural engineering. Global Disclosure of Economics and Business 2019, 8(2), 165-178. https://doi.org/10.18034/gdeb.v8i2.714