Effect of Dietary Supplementation with Durio zibethinus Murr. cv. Monthong Rind on the Hematology and Innate Immune Response Against Aeromonas hydrophila in Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus)

Main Article Content

Duangjai Pisuttharachai
Nataporn Sangkhonkhet
Warrapong Nalinanon
Saichon Lerdsuwan

Abstract

In vivo activity study of durian rind (Durio zibethinus Murr. cv. Monthong) as a supplement in the tilapia diet was performed to evaluate its effect on the hematology and innate immune response against Aeromonas hydrophila. Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus), with an initial average weight range of 40-45 g, were fed diets supplemented with durian rind at 0, 10, 15, and 20% for 140 days and were injected intraperitoneally with A. hydrophila. Blood was collected at 1 and 3 hours post-injection to determine the phagocytic activity and the durian rind efficiency in protecting fish red blood cells from hemolysin produced by A. hydrophila. Ensuing results showed that red blood cell counts in fish-fed durian rind supplemented diets, regardless of inclusion levels, did not decrease at 3 hours post bacterial infection and were significantly higher than control (P<0.05). Furthermore, we observed that the total white blood cells and phagocytic activity of all fish fed with diets supplemented with durian rind increased from 1-hour post-infection, indicating a heightened innate immune response. Taken together, durian rind supplementation of at least 10% in the tilapia diet can act as an immunostimulant and improve innate immune response and anti-hemolytic activity against A. hydrophila infection.

Article Details

Section
Research Articles

References

Yardimci, B.; Aydin, Y. Pathological findings of experimental Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Ankara Universitesi Veteriner Fakultesi Dergisi. 2011, 58, 47-54. https://doi.org/10.1501/Vetfak_0000002448

Pauzi, N. A.; Mohamad, N.; Azzam-Sayuti, M.; Yasin, I. S. M.; Saad, M. Z.; Nasruddin, N. S.; Azmai, M. N. A. Antibiotic susceptibility and pathogenicity of Aeromonas hydrophila isolated from red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus) in Malaysia. Veterinary World. 2020, 13, 2166-2171. https://doi.org/10.14202/vetworld.2020.2166-2171

Saleh, A.; Elkenany, R.; Younis, G. Virulent and multiple antimicrobial resistance Aeromonas hydrophila isolated from diseased Nile tilapia fish (Oreochromis niloticus) in egypt with sequencing of some virulence-associated genes. Biocontrol science. 2021, 26, 167-176. https://doi.org/10.4265/bio.26.167

Sukhavachana, S.; Ampolsak, K.; Poompuang, S. Positive genetic correlation between resistance to Aeromonasis and Streptococcosis in Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of Fisheries and Environment. 2020, 44, 45-54.

Sen, K.; Rodgers, M. Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. Journal of applied microbiology. 2004, 97, 1077-1086. https://doi.org/10.1111/j.1365-2672.2004.02398.x

Sherif, A. H.; AbuLeila, R. H. Prevalence of some pathogenic bacteria in caged-Nile Tilapia (Oreochromis niloticus) and their possible treatment. Jordan Journal of Biological Sciences. 2022, 15, 239-247. https://doi.org/10.54319/jjbs/150211

Swann, L.; White, M. R. Diagnosis and treatment of "Aeromonas hydrophila" infection of fish. Aquaculture Extension Illinois- Indiana Sea Gran Program. 1991.

Tipmongkolsilp, N.; del Castillo, C. S; Hikima, J. I; Jung, T. S; Kondo, H; Hirono, I; Aoki, T. Multiple drug-resistant strains of Aeromonas hydrophila isolated from tilapia farms in Thailand. Fish Pathology. 2012, 47(2), 56-63. https://doi.org/10.3147/jsfp.47.56

Samal, S. K; Das, B. K; Pal, B. B. Isolation, biochemical characterization, antibiotic susceptibility study of Aeromonas hydrophila isolated from freshwater fish. International Journal of Current Microbiology and Applied Sciences. 2014, 3(12), 259-267.

Ali, S.; Akhter, S.; Muhammad, A.; Khan, I.; Khan, W. A.; Iqbal, M. N.; Umar, S.; Ahmed, H.; Ali, Q. Identification, characterization and antibiotic sensitivity of Aeromonas hydrophila a causative agent of epizootic ulcerative syndrome in wild and farmed fish from Potohar, Pakistan. Pakistan Journal of Zoology. 2016, 48(3), 899-901.

Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT - Food Science and Technology. 2012, 48, 52-58. https://doi.org/10.1016/j.lwt.2012.02.029

Foo, K. Y.; Hameed, B. H. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal. 2012, 187, 53-62. https://doi.org/10.1016/j.cej.2012.01.079

Lubis, R.; Saragih, S. W.; Wirjosentono, B.; Eddyanto, E. (2018, July 18-19). Characterization of durian rinds fiber (Durio zubinthinus, murr) from North Sumatera. The 3rd international seminar on chemistry: green chemistry and its role for sustainability. Surabaya, Indonesia. https://doi.org/10.1063/1.5082474 https://doi.org/10.1063/1.5082474

Pongsamart, S.; Panmuang, T. Isolation of polysaccharide from fruit-hulls of durian (Durio zibethinus L.). Songklanakarin Journal of Science and Technology. 1998, 20, 323-332.

González-Vega, R.; Del-Toro-Sánchez, C. L.; Moreno-Corral, R.; López-Elías, J. A.; Reyes-Díaz, A.; García-Lagunas, N.; Carvajal-Millán, E.; Fimbres-Olivarría, D. Sulfated polysaccharide-rich extract from Navicula incerta: physicochemical characteristics, antioxidant activity, and anti-hemolytic property. AIMS Bioengineering. 2022, 9, 364-382. https://doi.org/10.3934/bioeng.2022027

Yang, H.; Bai, J.; Ma, C.; Wang, L.; Li, X.; Zhang, Y.; Xu, Y.; Yang, Y. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L. International Journal of Biological Macromolecules. 2020, 165, 738-746. https://doi.org/10.1016/j.ijbiomac.2020.09.093

Snega Priya, P.; Ashwitha, A.; Thamizharasan, K.; Harishkumar, M.; Dinesh, S.; Nithya, T. G.; Kamaraj, M. Synergistic effect of durian fruit rind polysaccharide gel encapsulated prebiotic and probiotic dietary supplements on growth performance, immune-related gene expression, and disease resistance in Zebrafish (Danio rerio). Heliyon. 2021, 7, https://doi.org/10.1016/j.heliyon.2021.e06669

Pholdaeng, K.; Pongsamart, S. Studies on the immunomodulatory effect of polysaccharide gel extracted from Durio zibethinus in Penaeus monodon shrimp against Vibrio harveyi and WSSV. Fish and Shellfish Immunology. 2010, 28, 555-561. https://doi.org/10.1016/j.fsi.2009.12.009

Sangkhonkhet, N.; Phanchindawan, N.; Lerdsuwan, S.; Nalinanon, W.; Pisuttharachai, D. Effect of Durio zibethinus Murr. cv. Monthong rind as a dietary ingredient in feed on the growth performance and disease resistance against Aeromonas hydrophila in Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus). ASEAN Journal of Scientific and Technological Reports. 2023, 26, 39-48. https://doi.org/10.55164/ajstr.v26i2.248572

Julie, B.; Julio, C.G.; Ahmed, D. Effect of copper sulfate on Aeromonas hydrophila infection in channel catfish fingerlings. North American Journal of Aquaculture. 2012, 74, 494-498. https://doi.org/10.1080/15222055.2012.685212

Duran, U.; Çenesiz, S.; Şahin, B. Blood sampling techniques and preparing for analysis in rainbow trout (Oncorhynchus mykiss). Black Sea Journal of Agriculture. 2023, 6(1), 68-73. https://doi.org/10.47115/bsagriculture.1185283

Fazio, F.; Marafioti, S.; Filiciotto, F.; Buscaino, G.; Panzera, M.; Faggio, C. Blood hemogram profiles of farmed onshore and offshore gilthead sea bream (Sparus aurata) from Sicily, Italy. Turkish Journal of Fisheries and Aquatic Sciences. 2013, 13, 415-422. https://doi.org/10.4194/1303-2712-v13_3_04

Itami, T.; Takahashi, Y.; Tsuchihira, E.; Igusa, H.; Kondo, M. Enhancement of disease resistance of kuruma prawn Penaeus japonicus and increase in phagocytic activity of prawn hemocytes after oral administration of ß-1, 3-glucan (Schizophyllan). In L.M. Chou, A.D. Munro, T.J. Lam, T.W. Chen, L.K.K. Cheong, J.K. Ding, K.K. Hooi, H.W. Khoo, V.P.E. Phang, K.F. Shim & C.H. Tan (Eds.), The 3rd Asian Fisheries Forum (pp. 375-378). Asian Fisheries Society, Manila, Philippines. 1994.

Rengpipat, S.; Rukpratanporn, S.; Piyatiratitivorakul, S.; Menasaveta, P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture. 2000, 191, 271-288. https://doi.org/10.1016/S0044-8486(00)00440-3

Xiong, N.X.; Luo, S.W.; Fan, L.F.; Mao, Z.W.; Luo, K.K.; Liu, S.J.; Wu, C.; Hu, F.Z.; Wang, S.; Wen, M.; Liu, Q.F. Comparative analysis of erythrocyte hemolysis, plasma parameters and metabolic features in red crucian carp (Carassius auratus red var) and triploid hybrid fish following Aeromonas hydrophila challenge. Fish and Shellfish Immunology. 2021, 118, 369-384. https://doi.org/10.1016/j.fsi.2021.09.025

Xiong, N. X.; Ou, J.; Fan, L. F.; Kuang, X. Y.; Fang, Z. X.; Luo, S. W.; Mao, Z. W.; Liu, S. J.; Wang, S.; Wen, M.; Luo, K. K.; Hu, F. Z.; Wu, C.; Liu, Q. F. Blood cell characterization and transcriptome analysis reveal distinct immune response and host resistance of different ploidy cyprinid fish following Aeromonas hydrophila infection. Fish and Shellfish Immunology. 2022, 120, 547-559. https://doi.org/10.1016/j.fsi.2021.12.024

Allan, B. J.; Stevenson, R. M. Extracellular virulence factors of Aeromonas hydrophila in fish infection. Canadian journal of microbiology. 1981, 27, 1114-1122. https://doi.org/10.1139/m81-174

Pansare, A. C.; Lewis, N. F.; Venugopal, V. Characterization of extracellular proteases of Aeromonas hydrophila. Agricultural and Biological Chemistry. 1986, 50, 1743-1749. https://doi.org/10.1271/bbb1961.50.1743

Santos, Y.; Toranzo, A. E.; Barja, J. L.; Nieto, T. P.; Villa, T. G. Virulence properties and enterotoxin production of Aeromonas strains isolated from fish. Infection and immunity. 1988, 56, 3285-3293. https://doi.org/10.1128/iai.56.12.3285-3293.1988

Esteve, C.; Birbeck, T. H. Secretion of haemolysins and proteases by Aeromonas hydrophila EO63: separation and characterization of the serine protease (caseinase) and the metalloprotease (elastase). Journal of applied microbiology. 2004, 96. 994-1001. https://doi.org/10.1111/j.1365-2672.2004.02227.x

Subashkumar, R.; Thayumanavan, T.; Vivekanandhan, G.; Lakshmanaperumalsamy, P. Occurrence of Aeromonas hydrophila in acute gasteroenteritis among children. The Indian journal of medical research. 2006, 123, 61-66.

Meng, Q.; Chen, F.; Xiao, T.; Zhang, L. Inhibitory effects of polysaccharide from Diaphragma juglandis fructus on α-amylase and α-d-glucosidase activity, streptozotocin-induced hyperglycemia model, advanced glycation end-products formation, and H2O2-induced oxidative damage. International Journal of Biological Macromolecules. 2019, 124, 1080-1089. https://doi.org/10.1016/j.ijbiomac.2018.12.011

Feriani, A.; Tir, M.; Hamed, M.; Sila, A.; Nahdi, S.; Alwasel, S.; Harrath, A. H.; Tlili, N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. International journal of biological macromolecules. 2020, 165, 2576-2587. https://doi.org/10.1016/j.ijbiomac.2020.10.123

Maktrirat, R.; Pongsamart, S.; Ajariyakhajorn, K.; Chansiripornchai, P. Bactericidal effect of post-milking teat dip prepared from polysaccharide gel from durian rinds on streptococci causing clinical bovine mastitis. Acta Horticulturae. 2008, 786, 33-40. https://doi.org/10.17660/ActaHortic.2008.786.1

Pholdaeng, K.; Pongsamart, S. Studies on the immunomodulatory effect of polysaccharide gel extracted from Durio zibethinus in Penaeus monodon shrimp against Vibrio harveyi and WSSV. Fish and Shellfish Immunology. 2010, 28, 555-561. https://doi.org/10.1016/j.fsi.2009.12.009

Lipipun, V.; Nantawanit, N.; Pongsamart, S. Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls. Songklanakarin Journal of Science and Technology. 2002, 24, 31-38.

Thunyakipisal, P.; Saladyanant, T.; Hongprasong, N.; Pongsamart, S.; Apinhasmit, W. Antibacterial activity of polysaccharide gel extract from fruit rinds of Durio zibethinus Murr. against oral pathogenic bacteria. Journal of investigative and clinical dentistry. 2010, 1, 120-125. https://doi.org/10.1111/j.2041-1626.2010.00017.x

Hong, J.; Du, H. X.; Hu, J. Y. Ultrasonic-assisted extraction of flavonoids from durian peel and their antioxidant and antimicrobial activities. Journal of Henan Agricultural University. 2014, 48, 653-657.

Hong, J.; Hu, J. Y.; Zhang, X.; Ma, X. M.; Han, S. Antioxidant and antibacterial activities of flavonoids extracted from durian peel. Guizhou Agricultural Sciences. 2014, 42, 41-43.

Janeway, C. A.; Travers, P.; Walport, M.; Shlomchik, M. J. Immunobiology: The Immune System in Health and Disease. New York: Garland Science. 2001. https://www.ncbi.nlm.nih.gov/books/NBK27090/

Peter, S. G.; Gakuya, D. W.; Maingi, N.; Mulei, C. M. Prevalence and risk factors associated with Ehrlichia infections in smallholder dairy cattle in Nairobi City County, Kenya. Veterinary World. 2019, 12, 1599-1607. https://doi.org/10.14202/vetworld.2019.1599-1607

Wang, E.; Chen, X.; Wang, K.; Wang, J.; Chen, D.; Geng, Y.; Lai, W.; Wei, X. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish. Fish and Shellfish Immunology. 2016, 59, 196-202. https://doi.org/10.1016/j.fsi.2016.10.039

Hokputsa, S.; Gerddit, W.; Pongsamart, S.; Inngjerdingen, K.; Heinze, T.; Koschella, A.; Harding, S.; Paulsen, B. (2004). Water-soluble polysaccharides with pharmaceutical importance from Durian rinds (Durio zibethinus Murr.): Isolation, fractionation, characterisation and bioactivity. Carbohydrate Polymers. 2004, 56, 471-481. https://doi.org/10.1016/j.carbpol.2004.03.018

Garna, H.; Mabon, N.; Wathelet, B.; Paquot, M. New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains. Journal of Agricultural and Food Chemistry. 2004, 52, 4652-4659. https://doi.org/10.1021/jf049647j

Hasem, N. H.; Fuzi, S. F.; Kormin, F.; Bakar, M. F.; Sabran, S. F. (2018, November 11-13). Extraction and Partial Characterization of durian Rind Pectin [Earth and Environmental Science 269]. International conference on biodiversity. Johor Darul Takzim, Malaysia. https://doi.org/10.1088/1755-1315/269/1/012019

Wang, H. Y.; Liao, M. S.; Zhang, M.; Wen, B.; Li, P. S.; Huang, C. X.; Wang, X. B. Study on the extraction of pectin technology from durian shell. Science and Technology of Food Industry. 2012, 33, 246-250.

Popov, S. V.; Ovodov, Y.S. Polypotency of the immunomodulatory effect of pectins. Biochemistry (Mosc). 2013, 78, 823-835. https://doi.org/10.1134/S0006297913070134

Zaitseva, O. O.; Polezhaeva, T. V.; Khudyakov, A. N.; Solomina, O. N.; Laptev, D. S.; Svedentsov, E. P.; Utemov, S. V.; Kostyaev, A. A. Influence of pectins on NADPH oxidase and phagocytic activity of neutrophils during cryopreservation. Cryo Letters. 2013, 34, 544-548.

Doan, H. V.; Hoseinifar, S. H.; Elumalai, P.; Tongsiri, S.; Chitmanat, C.; Jaturasitha, S.; Doolgindachbaporn, S. Effects of orange peels derived pectin on innate immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc system. Fish and Shellfish Immunology. 2018, 80, 56-62. https://doi.org/10.1016/j.fsi.2018.05.049

Liao, Z.; Su, J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost. Developmental and comparative immunology. 2021, 122, 104131, https://doi.org/10.1016/j.dci.2021.104131

Sahoo, B. R. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). International Journal of Biological Macromolecules. 2020, 161, 1602-1617. https://doi.org/10.1016/j.ijbiomac.2020.07.293

Li, Y.; Li, Y.; Cao, X.; Jin, X.; Jin, T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cellular and molecular immunology. 2017, 14, 80-89. https://doi.org/10.1038/cmi.2016.50

Li, Y.; Xia, P.; Wu, J.; Huang, A.; Bu, G.; Meng, F.; Kong, F.; Cao, X.; Han, X.; Yu, G.; Pan, X.; Yang, S.; Zeng, X.; Du, X. The potential sensing molecules and signal cascades for protecting teleost fishes against lipopolysaccharide. Fish and Shellfish Immunology. 2020, 97, 235-247. https://doi.org/10.1016/j.fsi.2019.12.050

Wangkahart, E.; Secombes, C. J.; Wang, T. Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture. Frontiers in immunology. 2019, 9, 3054. https://doi.org/10.3389/fimmu.2018.03054

Ribeiro, C. M.; Hermsen, T.; Taverne-Thiele, A. J.; Savelkoul, H. F.; Wiegertjes, G. F. Evolution of recognition of ligands from gram-positive bacteria: similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish. Journal of immunology. 2010, 184, 2355-2368. https://doi.org/10.4049/jimmunol.0900990

Pietretti, D.; Wiegertjes, G. F. Ligand specificities of Toll-like receptors in fish: indications from infection studies. Developmental and comparative immunology. 2014, 43, 205-222. https://doi.org/10.1016/j.dci.2013.08.010

Zhang, J.; Kong, X.; Zhou, C.; Li, L.; Nie, G.; Li, X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. Fish and Shellfish Immunology. 2014, 41, 380-388. https://doi.org/10.1016/j.fsi.2014.09.022

Hyun, G. H.; Cho, I. H.; Yang, Y. Y.; Jeong, D. H.; Kang, Y. P.; Kim, Y. S.; Lee, S. J., Kwon, S. W. Mechanisms of interactions in pattern-recognition of common glycostructures across pectin-derived heteropolysaccharides by Toll-like receptor 4. Carbohydrate Polymers. 2023, 314, 120921, https://doi.org/ 10.1016/j.carbpol.2023.120921