Isolation and Selection of Probiotic Bacteria from Nile Tilapia (Oreochromis niloticus) as Probiotics for Promoting Fish Growth
Main Article Content
Abstract
Bacillus spp. and lactic acid bacteria (LAB) were isolated from samples of Nile tilapia body (gastrointestinal tract, mucus, and fish scales) and fishpond water in Songkhla province, Thailand. Fifty-one bacterial isolates were obtained, and only 44 Gram-positive isolates were tested for their probiotic properties. These isolates were selected based on the ability to inhibit serious pathogens in tilapia, namely Streptococcus agalactiae and Aeromonas hydrophila; only isolated bacteria that can inhibit both fish pathogens were selected. Hence, 6 selected bacteria were further tested for their nutrient digestion, adhesion, and tolerance to acids and bile salts. It was found that only5 isolates passed those tests. There were three isolates of bacilli and two isolates of LAB. The five isolates were identified using the 16s rRNA gene method and API test kits, and only two isolates (Bacillus subtilis HW3B and Lactiplantibacillus plantarum DW5L) that could be safe for fish and humans were selected for further studies as probiotics for fish cultivation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ip, Y. K.; Chew, S. F. Ammonia production excretion, toxicity, and defense in fish: A review. Front. Physiol. 2010, 1, 134. https://doi.org/10.3389/fphys.2010.00134
Arun, C.; Sarabjeet, K.; Rahul, S. A review on probiotics and fish farming. Res. J. Pharm. Technol. 2018, 11 (11), 5143-5146. https://doi.org/10.5958/0974-360X.2018.00939.3
Kozasa, M. Toyocerin (Bacillus toyoi) as growth promotor for animal feeding. Microbiol Alim Nutr. 1986, 4(2), 121-135.
Worananthakij, W. Isolation of Probiotic Bacteria from Tilapia (Oreochromis sp.); Final Report; Faculty of Science, King Mongkut's Institute of Technology Ladkrabang: Bangkok, 2014. (in Thai with English abstract).
Balcázar, J. L.; Vendrell, D.; De Blas, I.; Ruiz-Zarzuela, I.; Muzquiz, O.; Girones, J. L. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 2008, 278, 188-191. https://doi.org/10.1016/j.aquaculture.2008.03.014
Giri, S. S.; Sukumaran, V.; Sen, S. S.; Vinumonia, J.; Banu, B. N.; Jena, P. K. Antagonistic activity of cellular components of potential probiotic bacteria isolated from the gut of Labeo rohita against Aeromonas hydrophila. Probiotics Antimicrob. Proteins. 2011, 3(3-4), 214-222. https://doi.org/10.1007/s12602-011-9078-3
Srisapoome, P.; Areechon, N. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish Shellfish Immunol. 2017, 67, 199-210. https://doi.org/10.1016/j.fsi.2017.06.018
Liu, H.; Wang, S.; Cai, Y.; Guo, X.; Cao, Z.; Zhang, Y.; Xie, Z. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses, and disease resistance of tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 60, 326-333. https://doi.org/10.1016/j.fsi.2016.12.003
Boyd, C. E. Water Quality: An Introduction, 2nd ed.; Springer International Publishing: Switzerland, 2015. https://link.springer.com/book/10.1007/978-3-030-23335-8 (accessed August 1, 2024).
Axelsson, L. Lactic Acid Bacteria: Classification and Physiology. In Lactic Acid Bacteria, 2nd ed.; Salminen, S., Wright, A. V., Eds.; Marcel Dekker: New York, 1998, 1-72. https://doi.org/10.1201/b11503-2
Phianpak, W.; Piyatiratitivorakul, S.; Menasveta, P.; Rengpipat, S. Use of Probiotics in Penaeus monodon. Abstract of Poster Session, 2nd Asia-Pacific Marine Biotechnology Conference, Phuket, Thailand, 1997.
Aslim, B.; Yuksekdag, Z. N.; Sirikaya, E.; Beyatli, Y. Determination of the bacteriocin-like substance produced by some lactic acid bacteria isolated from Turkish dairy products. LWT-Food Sci. Technol. 2005, 38, 691-694. https://doi.org/10.1016/j.lwt.2004.08.001
Michael, J.; Pelezar, J. Hydrolysis of Polysaccharide, Protein, and Lipid. In Laboratory Exercises in Microbiology; McGraw-Hill: New York, 1995, 126-188.
Taheri, H. R.; Moravej, H.; Tabandeh, F.; Zaghari, M.; Shivazad, M. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult. Sci. 2009, 88, 1586-1593. https://doi.org/10.3382/ps.2009-00041
Ratanaburee, A.; Kantachote, D.; Charernjiratrakul, W.; Sukhoom, A. Selection of γ-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int. J. Food Sci. Technol. 2013, 48, 1371-1382. https://doi.org/10.1111/ijfs.12098
Madureira, A. R.; Pereira, C. I.; Truszkowska, K.; Gomes, A. M.; Pintado, M. E.; Malcata, F. X. Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. Int. Dairy J. 2005, 15, 921-927. https://doi.org/10.1016/j.idairyj.2004.08.025
Jitpakdee, J.; Kantachote, D.; Kanzaki, H.; Nitoda, T. Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production: Lower cholesterol with more beneficial compounds. LWT-Food Sci. Technol. 2021, 135, 110061. https://doi.org/10.1016/j.lwt.2020.110061
NCBI. Nucleotide BLAST. Available at https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed May 5, 2021).
Panigrahi, A.; Kiron, V.; Satoh, S.; Hirono, I.; Kobayashi, T.; Sugita, H.; Puangkaew, J.; Aoki, T. Immune modulation and expression of cytokine genes in rainbow trout (Oncorhynchus mykiss) upon probiotic feeding. Dev. Comp. Immunol. 2007, 31, 372-382. https://doi.org/10.1016/j.dci.2006.07.004
Tinh, N. T. N.; Dierckens, K.; Sorgeloos, P.; Bossier, P. A review of the functionality of probiotics in the larviculture food chain. Mar. Biol. 2008, 10, 1-12. https://doi.org/10.1007/s10126-007-9054-9
Su, Y.; Liu, C.; Fang, H.; Zhan, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials, and medicine. Microb. Cell Fact. 2020, 19, 1-12. https://doi.org/10.1186/s12934-020-01436-8
Wei, Y.; Bu, J.; Long, H.; Zhang, X.; Cai, X.; Huang, A.; Ren, W.; Xie, Z. Community structure of protease-producing bacteria cultivated from aquaculture systems: Potential impact of a tropical environment. Front. Microbiol. 2021, 12, 1-11. https://doi.org/10.3389/fmicb.2021.638129
Hayashida, S.; Teramoto, Y.; Inoue, T. Production and characteristics of raw potato starch-digesting α-amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 1988, 54, 1516-1522. https://doi.org/10.1128/aem.54.6.1516-1522.1988
Chowdhury, A.; Hossain, N.; Mostazir, J. N.; Fakruddin, B. M.; Ahmed, M. Screening of Lactobacillus spp. from buffalo yoghurt for probiotic and antibacterial activity. J. Bacteriol. Parasitol. 2012, 3, 156-160. https://doi.org/10.4172/2155-9597.1000156
Zhu, M. L.; Wang, Y. H.; Dai, Y.; Wu, X. Q.; Ye, J. R. Effects of different culture conditions on the biofilm formation of Bacillus pumilus HR10. Curr. Microbiol. 2020, 77, 1405-1411. https://doi.org/10.1007/s00284-020-01944-1
Edgar, R. C. Updating the 97% dentity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018, 34, 2371-2375. https://doi.org/10.1093/bioinformatics/bty113
Kozlowski, P.A.; Cu-Uvin, S.; Neutra, M.R.; Flanigan, T.P. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun. 1997, 65, 1387-1394. https://doi.org/10.1128/iai.65.4.1387-1394.1997
Arasu, M.V.; Al-Dhabi, N.A.; Ilavenil, S.; Choi, K.C.; Srigopalram. S. In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi J Biol Sci. 2016, 23, S6-S10. https://doi.org/10.1016/j.sjbs.2015.09.022
Iorizzo, M.; Albanese, G.; Letizia, F.; Testa, B.; Tremonte, P.; Vergalito, F.; Lombardi, S.J.; Succi, M.; Coppola, R.; Sorrentino, E. Probiotic potentiality from versatile Lactiplantibacillus plantarum strains as resource to enhance freshwater fish health. Microorganisms. 2022, 10(2), 463. https://doi.org/10.3390/microorganisms10020463