Application of Expert Systems with Artificial Intelligence in the Medical Field: A Literature Review

Main Article Content

John Eric G. Ramirez
Mark Kenneth A. Valerio
Joshua R. Layug
Cereneo S. Santiago Jr
Ma. Leah P. Ulanday
Jared E. Alabanza

Abstract

Artificial intelligence (AI) has made enormous progress in recent decades, significantly influencing various industries, including the medical field. An expert system is a type of artificial intelligence that deliver specialized services in addition to experts by gathering specialty knowledge and expert information in a specific field. In light of the swift rise of Internet technology, the way expert systems are created and supplied has changed. The study used Google Scholar as the online database that provides published content about expert systems that apply AI in the medical field and covers the period of 2019 to 2024 to collect the latest data. The influence and effectiveness of utilizing an expert system with AI across various specializations are emphasized in this study's analysis of their uses in medicine. By using expert systems, they can mimic the decision-making of a human expert, improving healthcare results. Several medical specialties, including gynecology, neurology, orthopedics, ophthalmology, and cardiology, use these solutions based on AI. However, every field has its own set of difficulties, and technological developments are impacting the accuracy and reliability of diagnosis, especially gynecological diseases, which are more complex and diverse. Despite the difficulties, expert systems with AI can provide innovative solutions that can improve patient care. Understanding how AI works can pave the way for future innovation and progress in medical technologies, creating better patient results and more efficient healthcare systems. Educating medical personnel about AI and its applications could help them use these tools more efficiently to provide better patient care.

Article Details

Section
Research Articles

References

Sun, L.; Jiang, X.; Ren, H.; Guo, Y. Edge-Cloud Computing and Artificial Intelligence in Internet of Medical Things: Architecture, Technology and Application. IEEE Access 2020, 8, 101079-101092. https://doi.org/10.1109/ACCESS.2020.2997831.

Saibene, A.; Assale, M.; Giltri, M. Expert Systems: Definitions, Advantages and Issues in Medical Field Applications. Expert Syst. Appl. 2021, 177, 114900. https://doi.org/10.1016/j.eswa.2021.114900.

Lee, D.; Yoon, S. N. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int. J. Environ. Res. Public Health 2021, 18(1), 271. https://doi.org/10.3390/ijerph18010271.

Paranjape, K.; Schinkel, M.; Panday, R. N.; Car, J.; Nanayakkara, P. Introducing artificial intelligence training in medical education. JMIR Medical Education 2019, 5(2), e16048. https://doi.org/10.2196/16048.

Chan, K. S.; Zary, N. Applications and Challenges of Implementing Artificial Intelligence in Medical Education: Integrative Review. JMIR Med. Educ. 2019, 5(1), e13930. https://doi.org/10.2196/13930.

Aung, Y. Y. M.; Wong, D. C. S.; Ting, D. S. W. The Promise of Artificial Intelligence: A Review of the Opportunities and Challenges of Artificial Intelligence in Healthcare. Br. Med. Bull. 2021, 139(1), 4–15. https://doi.org/10.1093/bmb/ldab016.

Durach, C. F.; Kembro, J.; Wieland, A. A New Paradigm for Systematic Literature Reviews in Supply Chain Management. J. Supply Chain Manage. 2017, 53(4), 67-85.

Bowness, J. S.; Morse, R.; Lewis, O.; Lloyd, J.; Laurent, D. B.-S.; Bellew, B.; Macfarlane, A. J. R.; Pawa, A.; Taylor, A.; Noble, J. A.; Higham, H. Variability between human experts and artificial intelligence in identification of anatomical structures by ultrasound in regional anaesthesia: a framework for evaluation of assistive artificial intelligence. British Journal of Anaesthesia 2023. https://doi.org/10.1016/j.bja.2023.09.023.

Halfon, P.; Penaranda, G.; Ringwald, D.; Retornaz, F.; Boissel, N.; Bodard, S.; Feryn, J. M.; Bensoussan, D.; Cacoub, P. Laboratory tests for investigating anemia: From an expert system to artificial intelligence. Practical Laboratory Medicine 2024, e00357. https://doi.org/10.1016/j.plabm.2024.e00357.

Khanagar, S. B.; Al-ehaideb, A.; Maganur, P. C.; Vishwanathaiah, S.; Patil, S.; Baeshen, H. A.; Sarode, S. C.; Bhandi, S. Developments, Application, and Performance of Artificial Intelligence in Dentistry—A Systematic Review. J. Dent. Sci. 2021, 16(1), 508–522. https://doi.org/10.1016/j.jds.2020.06.019.

Araújo, V. S.; Guimarães, A.; De Campos Souza, P.; Rezende, T. S.; Araújo, V. S. Using Resistin, glucose, age and BMI and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancer. Machine Learning and Knowledge Extraction 2019, 1(1), 466–482. https://doi.org/10.3390/make1010028.

Rabaan, A. A.; Bakhrebah, M. A.; Alotaibi, J.; Natto, Z. S.; Alkhaibari, R. S.; Alawad, E.; Alshammari, H. M.; Alwarthan, S.; Alhajri, M.; Almogbel, M. S.; Aljohani, M. H.; Alofi, F. S.; Alharbi, N.; Al-Adsani, W.; Alsulaiman, A. M.; Aldali, J.; Al Ibrahim, F.; Almaghrabi, R. S.; Al-Omari, A.; Garout, M. Unleashing the Power of Artificial Intelligence for Diagnosing and Treating Infectious Diseases: A Comprehensive Review. J. Infect. Public Health 2023, 16(1837–1847). https://doi.org/10.1016/j.jiph.2023.08.021.

El-Habibi, M. F.; Megdad, M. M. M.; Al-Qadi, M. H.; AlQatrawi, M. J. A.; Sababa, R. Z.; Abu-Naser, S. S. A Proposed Expert System for Obstetrics & Gynecology Diseases Diagnosis. Int. J. Acad. Multidiscip. Res. 2022, 6(5), 305-321.

Melina; Putra, E. K.; Witanti, W.; Sukrido; Kusumaningtyas, V. A. Design and Implementation of Multi Knowledge Base Expert System Using the SQL Inference Mechanism for Herbal Medicine. J. Phys.: Conf. Ser. 2020, 1477(2), 022007. https://doi.org/10.1088/1742-6596/1477/2/022007.

Sumiati, S.; Saragih, H.; Rahman, T. A.; Triayudi, A. Expert system for heart disease based on electrocardiogram data using certainty factor with multiple rule. IAES International Journal of Artificial Intelligence 2021, 10(1), 43. https://doi.org/10.11591/ijai.v10.i1.pp43-50.

Al-Hajji, A. A.; AlSuhaibani, F. M.; AlHarbi, N. S. An Online Expert System for Psychiatric Diagnosis. Int. J. Artif. Intell. Appl. 2019, 10 (2), 59. https://doi.org/10.5121/ijaia.2019.10206.

Yadav, A. K.; Shukla, R.; Singh, T. R. Machine Learning in Expert Systems for Disease Diagnostics in Human Healthcare. In Machine Learning, Big Data, and IoT for Medical Informatics; Intelligent Data-Centric Systems; Elsevier Inc.: 2021, 179-200. https://doi.org/10.1016/B978-0-12-821777-1.00022-7.

Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial Intelligence in Cancer Diagnosis and Prognosis: Opportunities and Challenges. Cancer Lett. 2020, 471, 61-71. https://doi.org/10.1016/j.canlet.2019.12.007.

Salem, H.; Soria, D.; Lund, J. N.; Awwad, A. A. A Systematic Review of the Applications of Expert Systems (ES) and Machine Learning (ML) in Clinical Urology. BMC Med. Inform. Decis. Mak. 2021, 21(1), 223. https://doi.org/10.1186/s12911-021-01585-9.

Chumachenko, D.; Balitskii, V.; Chumachenko, T.; Makarova, V.; Railian, M. Intelligent Expert System of Knowledge Examination of Medical Staff Regarding Infections Associated with the Provision of Medical Care. Mod. Mach. Learn. Technol. Data Sci. 2019, 2386, 321–330.

Athota, L.; Shukla, V. K.; Pandey, N.; Rana, A. Chatbot for Healthcare System Using Artificial Intelligence. In Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO); Noida, India, 2020, 619-622. https://doi.org/10.1109/ICRITO48877.2020.9197833.

Haug, C. J.; Drazen, J. M. Artificial Intelligence and Machine Learning in Clinical Medicine. N. Engl. J. Med. 2023, 388 (13), 1201-1208. https://doi.org/10.1056/NEJMra2302038.

Mansour, R. F.; Amraoui, A. E.; Nouaouri, I.; Díaz, V. G.; Gupta, D.; Kumar, S. Artificial Intelligence and Internet of Things Enabled Disease Diagnosis Model for Smart Healthcare Systems. IEEE Access 2021, 9, 45137-45146. https://doi.org/10.1109/ACCESS.2021.3066365.

Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M. A. A.; Dwivedi, Y. K. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge 2023, 8(1), 100333. https://doi.org/10.1016/j.jik.2023.100333.

Alowais, S. A.; Alghamdi, S. S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A. I.; Almohareb, S. N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H. A.; Al Yami, M. S.; Al Harbi, S.; Albekairy, A. M. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. https://doi.org/10.1186/s12909-023-04698-z.

Richardson, J. P.; Smith, C.; Curtis, S.; Watson, S.; Zhu, X.; Barry, B.; Sharp, R. R. Patient apprehensions about the use of artificial intelligence in healthcare. Npj Digital Medicine 2021, 4(1). https://doi.org/10.1038/s41746-021-00509-1.

Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V. I. Explainability for Artificial Intelligence in Healthcare: A Multidisciplinary Perspective. BMC Med. Inform. Decis. Mak. 2020, 20(1), 310. https://doi.org/10.1186/s12911-020-01332-6.

Tkateka, S.; Belmzoukia, A.; Nafaib, S.; Abouchabaka, J.; Ibnou-ratiba, Y. Putting the World Back to Work: An Expert System Using Big Data and Artificial Intelligence in Combating the Spread of COVID-19 and Similar Contagious Diseases. Work 2020, 67, 557–572. https://doi.org/10.3233/WOR-203309.

Jiang, L.; Wu, Z.; Xu, X.; Zhan, Y.; Jin, X.; Wang, L.; Qiu, Y. Opportunities and Challenges of Artificial Intelligence in the Medical Field: Current Application, Emerging Problems, and Problem-Solving Strategies. J. Int. Med. Res. 2021, 49(3), 1–11. https://doi.org/10.1177/03000605211000157.

Chua, M.; Kim, D.; Choi, J.; Lee, N. G.; Deshpande, V.; Schwab, J.; Lev, M. H.; Gonzalez, R. G.; Gee, M. S.; Do, S. Tackling Prediction Uncertainty in Machine Learning for Healthcare. Nat. Biomed. Eng. 2023, 7, 711–718. https://doi.org/10.1038/s41551-022-00988-x.

Ala, A.; Chen, F. Appointment Scheduling Problem in Complexity Systems of the Healthcare Services: A Comprehensive Review. J. Healthcare Eng. 2022, 5819813. https://doi.org/10.1155/2022/5819813.

Serhani, M. A.; El Kassabi, H. T.; Ismail, H.; Navaz, A. N. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors 2020, 20(6), 1796. https://doi.org/10.3390/s20061796.

Long, N. P.; Nghi, T. D.; Kang, Y. P.; Anh, N. H.; Kim, H. M.; Park, S. K.; Kwon, S. W. Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine. Metabolites 2020, 10(2), 51. https://doi.org/10.3390/metabo10020051.

Kim, S.; Kim, E. H.; Kim, H. S. Physician Knowledge Base: Clinical Decision Support Systems. Yonsei Med. J. 2022, 63(1), 8–15. https://doi.org/10.3349/ymj.2022.63.1.8.